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Dedicated to Hernán Cendra

ABSTRACT. In these notes, we present an alternative version of discrete Dirac mechanics
using Dirac structures. We first establish a notion of ‘continuous Dirac system’ and then
propose a definition of discrete Dirac system, proving that it is possible to recover discrete
Lagrangian and Hamiltonian systems as particular cases. We also note that this approach
allows for kinematic as well as variational constraints.

1. INTRODUCTION

The notion of Dirac structure as a generalization of both presymplectic and Poisson
structures goes back to the work of T. Courant and A. Weinstein around 1990 ([Cou90]
and [CW88]). The usage of these objects to construct mechanical systems can be traced
back to, for example, the port-Hamiltonian systems considered in [DvdS98]. Years later,
J. E. Marsden and H. Yoshimura pursued the idea of using Dirac structures to provide a
unified framework to treat Lagrangian and Hamiltonian systems ([YM06a] and [YM06b]).
They introduced the so-called implicit Lagrangian and Hamiltonian systems, which allowed
them to consider degenerate Lagrangians and nonholonomic constraints.

In the discrete setting, analogues of these systems were presented by M. Leok and T. Oh-
sawa in [LO11], where the authors introduced the concept of ‘discrete induced Dirac struc-
ture’. Using these objects, they defined ‘discrete Lagrange–Dirac systems’ and ‘discrete
nonholonomic Hamiltonian systems’, which allowed them to recover discrete Lagrangian
systems (as considered in [MW01]) and discrete Hamiltonian systems (as considered in
[LW06]). These structures, however, are not Dirac structures themselves, and it is a natural
question whether it is possible to obtain the same results using an actual Dirac structure.
The goal of our work is, then, to propose an alternative version of discrete mechanical sys-
tems in the Dirac setting, but making use of Dirac structures. We believe that an advantage
of this approach would be to, hopefully, make use of results already known in the theory of
Dirac structures and attempt, among other things, to construct a reduction procedure.

To this end, instead of treating Lagrangian and Hamiltonian systems separately, we will
first establish a notion of ‘(continuous) Dirac system’ (very much as it is done, for example,
in [BL+19] and [CEF14]) and then present a discrete version of it. This notion of discrete
Dirac system will allow us to recover the results of [LO11] discussed in the previous para-
graph and will provide a little more flexibility, since it will allow for kinematic as well as
variational constraints. This is important because many authors, when dealing with discrete
mechanical systems, think of the variational and kinematic constraints as being related. In
a sense, in the case of systems coming as discretizations of a continuous system, they tra-
ditionally arise as two reflections of a single constraint (see, for example, [CM01]). In the
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discrete setting, however, the kinematic and variational constraints are entirely different ob-
jects and we find it unnatural to assume that they have to be related as an intrinsic part of the
system. In that sense, we find that the discrete systems correlate easily with the generalized
nonholonomic systems of [CG06].

The outline of this paper is as follows: in Section 2 we review the basic definitions
regarding Dirac structures and establish the definition of Dirac system, and in Section 3 we
introduce what we call ‘discrete Dirac systems’, showing how they contain both discrete
Lagrangian and Hamiltonian systems as particular cases. To conclude, we discuss some
topics we would like to study in the future.

2. DIRAC STRUCTURES AND DIRAC SYSTEMS

2.1. Dirac structures. Following the presentation given in [YM06a] and [YM06b], let us
first consider a finite-dimensional vector space V . If V ∗ is the dual space, we have the
natural duality ⟨·, ·⟩. We define the symmetric pairing ⟨⟨·, ·⟩⟩ on V ⊕V ∗ by

⟨⟨(v,α),(v̄, ᾱ)⟩⟩= ⟨α, v̄⟩+ ⟨ᾱ,v⟩,
for (v,α),(v̄, ᾱ) ∈V ⊕V ∗.

Definition 1. A Dirac structure on V is a subspace D ⊂ V ⊕V ∗ such that D = D⊥, where
D⊥ the orthogonal complement of D with respect to ⟨⟨·, ·⟩⟩.
Definition 2. A Dirac structure on a manifold M is a subbundle D of the Pontryagin bundle
TM := T M ⊕T ∗M such that for each m ∈ M, D(m) ⊂ TmM ⊕T ∗

mM is a Dirac structure in
the above sense.

Remark 1. Strictly speaking, the above definition is that of an almost Dirac structure. The
missing feature is an integrability condition that we will omit, as is often the convention
when using these objects in mechanics (see, for example, [BL+19], [YM06a], [YM06b]).

The Pontryagin bundle of a manifold M comes with three natural projections: ρT M :
TM −→ T M, ρT ∗M : TM −→ T ∗M and ρM : TM −→ M.

A distribution and a two-form on a manifold induce a Dirac structure on it. This result
will be used several times in the following pages, so we state it here.

Theorem 1 ([YM06a, Theorem 2.3]). Let M be a manifold and let Ω be a two-form on M.
Given a distribution ∆M on M, define the skew-symmetric bilinear form Ω∆M on ∆M by
restricting Ω to ∆M. For each m ∈ M, let

DM(m) := {(vm,αm) ∈ TmM×T ∗
mM | vm ∈ ∆M(m) and

αm(wm) = Ω∆M(m)(vm,wm) ∀wm ∈ ∆M(m)}.
Then, DM ⊂ T M⊕T ∗M is a Dirac structure on M, which we will denote by D(∆M,Ω∆M).

2.2. Dirac systems. Inspired by the definitions considered in, for example, [BL+19] and
[CEF14], we introduce the following:

Definition 3. A Dirac system consists of a triple (Q,D,α), where Q is a smooth manifold
(the configuration space), D is a Dirac structure on TQ and α is a 1-form on TQ, usually
arising from the energy of the system.

Definition 4. A curve z(t) on TQ is a trajectory of the system (Q,D,α) if it satisfies

ż(t)⊕α(z(t)) ∈ D(z(t)). (1)

As we see next, these systems naturally contain the implicit Lagrangian and Hamiltonian
ones considered in [YM06a] and [YM06b].
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Example 1 (Implicit Lagrangian systems). An implicit Lagrangian system, as introduced
in [YM06a] (see also [LO11, Definition 2.4]), consists of a Lagrangian L : T Q −→ R, a
constraint distribution ∆Q ⊂ T Q and a vector field X on T ∗Q. Locally, setting1 X = q̇ ∂

∂q +

ṗ ∂

∂ p , the trajectories of the system are characterized by the equations ([YM06a, Proposition
6.3])

p =
∂L
∂v

, q̇ ∈ ∆Q(q), v = q̇, ṗ− ∂L
∂q

∈ ∆
◦
Q(q),

where ∆◦
Q(q) is the annihilator of ∆Q(q).

We can present an implicit Lagrangian system as a Dirac system as follows: given a
Lagrangian L : T Q −→R and a constraint distribution ∆Q ⊂ T Q, consider the Dirac system
(Q,D∆,αL) given by

∗ D∆ := D(∆,ωP), a Dirac structure on TQ induced by ∆ := (T ρQ)
−1(∆Q) and ωP :=

ρ∗
T ∗QωQ, where ωQ is the canonical symplectic structure on T ∗Q,

∗ αL := dEL, with EL : TQ −→ R defined as EL(vq,αq) := αq(vq)−L(vq).
Explicitly, the Dirac structure D∆ is described as

D∆(z) = {wz ⊕βz ∈ TzTQ⊕T ∗
z TQ | wz ∈ ∆(z), βz − iwzωP ∈ ∆

◦(z)}.

In canonical coordinates,

αL =−∂L
∂q

dq+
(

p− ∂L
∂v

)
dv+ vd p

and condition (1) is equivalent to (q, q̇) ∈ ∆Q and

−∂L
∂q

δq+
(

p− ∂L
∂v

)
δv+ vδ p = q̇δ p− ṗδq

for all (δq,δv,δ p) ∈ ∆(q,v, p), where

∆(q,v, p) = {(δq,δv,δ p) ∈ T(q,v,p)TQ | δq ∈ ∆Q(q)}. (2)

Therefore, the equations of (Q,D∆,αL) are

ṗ− ∂L
∂q

∈ ∆
◦
Q, p =

∂L
∂v

, q̇ = v, (q, q̇) ∈ ∆Q,

which are precisely those of the original implicit Lagrangian system.

Example 2 (Implicit Hamiltonian systems). An implicit Hamiltonian system, as considered
in [YM06b] (see also [LO11, Definition 2.7]), consists of a Hamiltonian H : T ∗Q −→ R,
a constraint distribution ∆Q ⊂ T Q and a vector field X on T ∗Q. In canonical coordinates,
setting X = q̇ ∂

∂q + ṗ ∂

∂ p , the trajectories of the system are characterized by the equations
([YM06b, Proposition 3.14])

ṗ+
∂H
∂q

∈ ∆
◦
Q, q̇ =

∂H
∂ p

, (q, q̇) ∈ ∆Q.

1Throughout this paper we will use a rather compact notation when working in coordinates. Equation
X = q̇ ∂

∂q + ṗ ∂

∂ p should be interpreted as

X = q̇i ∂

∂qi + ṗi
∂

∂ pi
,

where we are using the convention of summing over repeated indexes.
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In the Dirac setting, given a Hamiltonian H : T ∗Q −→ R and a constraint distribution
∆Q ⊂ T Q, consider the Dirac system (Q,D∆,dH̃) where H̃ := H ◦prT ∗Q and D∆ is defined
as in Example 1.

This time, condition (1) reads(
ṗ+

∂H
∂q

)
δq+

(
−q̇+

∂H
∂ p

)
δ p = 0

for all (δq,δv,δ p) ∈ ∆(q,v, p) (where, as in Example 1, ∆(q,v, p) is given by (2)), together
with (q,δq) ∈ ∆Q. Therefore, the equations of the system are

ṗ+
∂H
∂q

∈ ∆
◦
Q, q̇ =

∂H
∂ p

, (q, q̇) ∈ ∆Q,

which are the equations of the original implicit Hamiltonian system.

3. DISCRETE DIRAC SYSTEMS

We now turn our attention to the discrete setting, presenting a notion of ‘discrete Dirac
system’. A discrete version of the implicit Lagrangian and Hamiltonian systems considered
in [YM06a] and [YM06b] by H. Yoshimura and J. E. Marsden was presented in [LO11] by
M. Leok and T. Ohsawa. In their work, they introduce an object they call ‘discrete induced
Dirac structure’, which is a discrete analogue of the structures described in Theorem 1, but
fails to be a Dirac structure in itself (it is not a subbundle of the corresponding Pontryagin
bundle).

Our goal is then to present an alternative approach that makes use of actual Dirac struc-
tures. In order to do so, we will not consider implicit Lagrangian and Hamiltonian systems
separately, but will construct a discrete analogue of (continuous) Dirac systems that contains
both discrete Lagrangian and Hamiltonian systems as particular cases.

In discrete mechanics, one often works with maps whose domains are product manifolds,
giving rise to two natural operators, namely D1 and D2. We briefly review this construction
below, before using it in the following sections.

Given an n-dimensional manifold Q, we consider the product manifold Q×Q and, for
i = 1,2, the projection pri : Q×Q −→ Q onto the i-th factor. Using the product structure of
Q×Q, we have that

T (Q×Q)≃ pr∗1(T Q)⊕pr∗2(T Q),

where pr∗i (T Q) denotes the pullback of the tangent bundle T Q −→ Q over Q×Q by pri for
i = 1,2. If we define j1 : pr∗1(T Q) −→ T (Q×Q) as j1(δq) := (δq,0), we have that j1 is
an isomorphism of vector bundles between pr∗1(T Q) and T Q− := ker(T pr2) ⊂ T (Q×Q).
Similarly, defining j2 : pr∗2(T Q)−→ T (Q×Q) as j2(δq) := (0,δq) identifies pr∗2(T Q) with
the subbundle T Q+ := ker(T pr1)⊂ T (Q×Q).

So, the decomposition T (Q×Q) = T Q−⊕T Q+ leads to the decomposition

T ∗(Q×Q) = (T Q−)◦⊕ (T Q+)◦

and the natural identifications (T Q+)◦ ≃ (T Q−)∗ ≃ pr∗1T ∗Q and (T Q−)◦ ≃ (T Q+)∗ ≃
pr∗2T ∗Q.

For any smooth map f : Q×Q → X , where X is a smooth manifold, we define D1 f :=
T f ◦ j1 and D2 f := T f ◦ j2, where T f : T (Q×Q) −→ T X denotes the tangent map of f .
Thus,

T f (q0,q1)(δq0,δq1) = D1 f (q0,q1)(δq0)+D2 f (q0,q1)(δq1).

In particular, if f : Q×Q −→ R, then D1 f (q0,q1) ∈ T ∗
q0

Q and D2 f (q0,q1) ∈ T ∗
q1

Q.
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Let M be a smooth manifold. Given a natural number N, a discrete curve of length N
is a map x. : {0, . . . ,N} −→ M. Note that the space of discrete curves of length N may be
identified with the cartesian product MN+1, so it has a (finite dimensional) smooth manifold
structure.

Definition 5. Let Q be a smooth manifold. We define its discrete Pontryagin bundle as

Pd
Q := (Q×Q)×Q T ∗Q ≃ T ∗Q×Q, (3)

where we are considering the fiber bundles pr1 : Q×Q −→ Q and the cotangent bundle
πQ : T ∗Q −→ Q.

Intuitively, the first space in (3) is more natural, since Q×Q is the discrete analogue
of the tangent bundle2, but we will use the latter because it is easier to work on a product
manifold. The two natural projections are prT ∗Q : Pd

Q −→ T ∗Q and prQ : Pd
Q −→ Q, given

by prQ(αq,q+) := q+.
We will always use the following notation unless explicitly stated otherwise: x= (αq,q+)

will be a point in Pd
Q, with αq ∈ T ∗

q Q and q+ ∈ Q, and δx = (δαq,δq+) will be a tangent
vector to Pd

Q at x, with δαq ∈ TαqT ∗Q and δq+ ∈ Tq+Q. A discrete curve on Pd
Q will therefore

be denoted by x. = (αq.,q+.). Notice that the subindexes are used to indicate the position
in a given path and have nothing to do with coordinates.

We will restrict our attention to the discrete curves on Pd
Q that satisfy a certain ‘second

order condition’. We say that a discrete curve x. is admissible if

(xk,xk+1) = ((αqk ,q
+
k ),(αqk+1 ,q

+
k+1))

satisfies q+k = qk+1 for all k = 0, . . . ,N −1. This means that xk = (αqk ,qk+1) for all k.
We denote the space of admissible discrete curves on Pd

Q of length N by Cd(Pd
Q).

For our definition of discrete Dirac system we will use 1-forms defined on Cd(Pd
Q), so

we first check that this makes sense.

Lemma 1. Cd(Pd
Q) is a regular submanifold of Pd

Q × . . .×Pd
Q.

Proof. Let us define a map φ : (Pd
Q)

N+1 −→ (Q×Q)N+1, where (Pd
Q)

N+1 means Pd
Q × . . .×

Pd
Q N +1 times and similarly for (Q×Q)N+1, by

φ((αq0 ,q
+
0 ), . . . ,(αqN ,q

+
N )) := ((q0,q+0 ), . . . ,(qN ,q+N )).

Notice that φ is a submersion and Cd(Pd
Q) can be regarded as

Cd(Pd
Q) = φ

−1(Q×∆(Q)× . . .×∆(Q)︸ ︷︷ ︸
N times

×Q),

where ∆(Q) ⊂ Q × Q is the diagonal, which is a regular submanifold. Therefore, Q ×
∆(Q)× . . .×∆(Q)×Q is a regular submanifold and Cd(Pd

Q) is its nonempty preimage by a
submersion. □

For the rest of this article, we will use the following notation: since

Tx.(Pd
Q × . . .×Pd

Q)≃ Tx0P
d
Q ⊕ . . .⊕TxNP

d
Q,

a 1-form ψ on Pd
Q × . . .× Pd

Q can be regarded as a sum ψ = ψ0 + . . .+ ψN , with ψ j :
(Pd

Q)
N+1 −→ T ∗Pd

Q such that ψ j(x0, . . . ,xN) ∈ T ∗
x j
Pd

Q. Therefore, we will denote ψk(x.) :=
ψ(x.,k).

2It is a well-established idea to replace tangent vectors with close enough points in Q when considering
discrete-time dynamical systems.
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Definition 6. A discrete Dirac system is given by (Q,D,D ,ψ), where Q is a smooth man-
ifold, D is a Dirac structure on Pd

Q, D ⊂ Q×Q is a submanifold and ψ is a 1-form on
Cd(Pd

Q).

Definition 7. A discrete curve x.= (αq.,q+.) ∈ Cd(Pd
Q) on Pd

Q is a trajectory of the system
if it satisfies (qk,qk+1) ∈ D together with(

verαqk
(αqk),0

)
⊕ψk(x.) ∈ D(xk), 0 ≤ k ≤ N −1, (4)

where ver is the vertical lift on T ∗Q given by

verαq(βq) :=
d
dt

∣∣∣∣
t=0

αq + tβq ∈ TαqT ∗Q.

In local coordinates, equation (4) is simply

(0, pk,0)⊕ψk(x.) ∈ D(xk), 0 ≤ k ≤ N −1.

In the next pages we will see how this formulation contains both discrete Lagrangian and
Hamiltonian systems. To this end, we will consider the 2-form ωd

P := −pr∗T ∗QωQ on Pd
Q,

where ωQ is the canonical symplectic form on T ∗Q.
In canonical coordinates, given δxk := (δαqk ,δq+k ) ∈ TxkPd

Q,

ω
d
P(xk)

((
verαqk

(αqk),0
)
,δxk

)
=−ωQ(qk, pk)((0, pk),(δqk,δ pk)) = pk ·δqk.

3.1. Discrete Lagrangian systems. A well-known type of discrete-time constrained me-
chanical system is the family of nonholonomic discrete mechanical systems (see [CM01]
and [FTZ10]). One such system consists of (Q,Ld ,∆Q,D), where Q is a smooth manifold,
Ld : Q×Q −→ R is a smooth function, ∆Q is a subbundle of T Q and D ⊂ Q×Q is a sub-
manifold. The trajectories of these systems are characterized by the following equations:

D1Ld(qk,qk+1)+D2Ld(qk−1,qk) ∈ ∆
◦
Q(qk), (qk,qk+1) ∈ D . (5)

We can present a nonholonomic discrete mechanical system as a discrete Dirac system
as follows: given a discrete Lagrangian Ld : Q × Q −→ R, a constraint distribution ∆Q
and a submanifold D ⊂ Q×Q, consider the discrete Dirac system (Q,D∆,D ,ψL), where
D∆ := D(∆,ωd

P) is the Dirac structure induced by ωd
P and ∆ := (T (πQ ◦prT ∗Q))

−1(∆Q), and
ψL is defined as

ψL(x.,k) :=−D1Ld(qk,qk+1)+(αqk+1 −D2Ld(qk,qk+1)).

The distribution ∆ is given explicitly by

∆(x) = {(δαq,δq+) ∈ TxPd
Q | δq := T πQ(δαq) ∈ ∆Q(q)}.

In canonical coordinates, condition (4) is equivalent to (0, pk,0) ∈ ∆(xk) together with

pk ·δqk =−D1Ld(qk,q+k ) ·δqk +
(

pk+1 −D2Ld(qk,q+k )
)
·δq+k

for all δxk = (δqk,δ pk,δq+k ) ∈ ∆(xk). That is,

(pk +D1Ld(qk,q+k )) ·δqk − (pk+1 −D2Ld(qk,q+k )) ·δq+k = 0

for all δxk ∈ ∆(xk), and (0, pk,0) ∈ ∆(xk), which is equivalent to

T πQ · (qk, pk,0, pk) = (qk,0) ∈ ∆Q,

and is trivially satisfied, because ∆Q(qk) is a vector subspace of Tqk Q.
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Therefore, the equations of the system are

pk+1 = D2Ld(qk,q+k ), pk +D1Ld(qk,q+k ) ∈ ∆
◦
Q(qk)

q+k = qk+1, (qk,qk+1) ∈ D .

That is,

pk+1 = D2Ld(qk,qk+1), pk +D1Ld(qk,qk+1) ∈ ∆
◦
Q(qk), (qk,qk+1) ∈ D . (6)

Comparison of (6) with (5) proves the following:

Proposition 1. The trajectories of the nonholonomic discrete mechanical system (Q,Ld ,
∆Q,D) correspond to those of the discrete Dirac system (Q,D∆,D ,ψL).

Remark 2. If the submanifold D and the distribution ∆Q are related by means of a retrac-
tion on Q (see [LO11, Section 4]), then equations (6) are equivalent to the (+)-discrete
Lagrange–Dirac equations considered in [LO11, Section 5.1].

Remark 3. Notice that without constraints, the equation p0 +D1Ld(q0,q1) = 0 forces an
initial condition x0 ∈ Pd

Q to be of the form (−D1Ld(q0,q1),q1) if we expect it to give rise to
a trajectory.

Example 3. Let us consider the discrete harmonic oscillator described by the (uncon-
strained) discrete Lagrangian system (R,Ld), where

Ld(q,q+) := h

[
1
2

(
q+−q

h

)2

− λ

2
q2

]
,

with λ a nonnegative constant.
The derivatives we will need are

D1Ld(q,q+) =−1
h
(q+−q)−hλq, D2Ld(q,q+) =

1
h
(q+−q).

In the Dirac setting, we consider the system (R,D,R×R,ψL), where

ψL(x.,k) =
(

qk+1 −qk

h
+hλqk,0, pk+1 −

qk+1 −qk

h

)
∈ T ∗

qk
R×T ∗

pk
R×T ∗

qk+1
R

and
D(x) = {v⊕α | ω

d
P(v,w) = α(w) ∀w ∈ TxPd

Q}
= {(q̇, ṗ,q′)⊕α | ṗδq− q̇δ p = α(δq,δ p,δq+) ∀(δq,δ p,δq+) ∈ TxPd

Q}.
The initial data (q0,q1) ∈ R×R for the original Lagrangian system induces the initial

data x0 = (q0, p0,q1), with (q0, p0) = −D1Ld(q0,q1) (see Remark 3). Let us construct a
trajectory (x0,x1).

The condition (4) for k = 0 is (0, p0,0)⊕ψL(x.,0) ∈ D(x0), that is,

p0 δq0 =

(
q1 −q0

h
+hλq0

)
δq0 +

(
p1 −

q1 −q0

h

)
δq1

for all (δq0,δ p0,δq1) ∈ Tx0Pd
R. This yields

p0 =
q1 −q0

h
+hλq0, p1 =

q1 −q0

h
.

The first equation is the restriction regarding the initial data that we discussed in Re-
mark 3. Iterating, when k = 1 we have (0, p1,0)⊕ψL(x.,1) ∈ D(x1):

q1 −q0

h
δq1 =

(
q2 −q1

h
+hλq1

)
δq1 +

(
p2 −

q2 −q1

h

)
δq2,
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for all (δq1,δ p1,δq2) ∈ Tx1Pd
R. This leads to

q2 = 2q1 −q0 +h2
λq1, p2 =

q2 −q1

h
.

Therefore, the trajectory (x0,x1) is

(x0,x1) =

((
q0,

q1 −q0

h
+hλq0,q1

)
,

(
q1,

q1 −q0

h
,2q1 −q0 −h2

λq1

))
.

3.2. Discrete Hamiltonian systems. In [LZ11], the authors introduce the notion of dis-
crete Hamiltonian mechanical system from a variational viewpoint. Such a system is given
by a vector space Q and a discrete Hamiltonian function Hd : T ∗Q ≃ Q×Q∗ −→ R. Its
trajectories are characterized by the ‘discrete right Hamilton’s equations’3:

qk+1 = D2Hd(qk, pk+1), pk = D1Hd(qk, pk+1). (7)

In the Dirac setting, given a vector space Q, a discrete Hamiltonian Hd : Q×Q∗ −→ R,
a constraint distribution ∆Q ⊂ T Q and a submanifold D ⊂ Q × Q, consider the system
(Q,D∆,D ,ψH), where D∆ := D(∆,ωd

P) is, as in the Lagrangian systems, the Dirac structure
induced by ωd

P and ∆ := (T (πQ ◦ prT ∗Q))
−1(∆Q), and the 1-form ψH is given in global

canonical coordinates by

ψH(x.,k) :=
∂Hd

∂q
(qk, pk+1)dqk +

(
∂Hd

∂ p
(qk, pk+1)−qk+1

)
d pk.

In these coordinates, equation (4) is equivalent to (0, pk,0) ∈ ∆(xk) (which is trivially
satisfied, as in Section 3.1) and

pk ·δqk =
∂Hd

∂q
(qk, pk+1) ·δqk +

(
∂Hd

∂ p
(qk, pk+1)−qk+1

)
·δ pk

for all δxk = (δqk,δ pk,δqk+1) ∈ ∆(x). That is,(
pk −

∂Hd

∂q
(qk, pk+1)

)
·δqk −

(
∂Hd

∂ p
(qk, pk+1)−qk+1

)
·δ pk = 0

for all δxk ∈ ∆(xk).
Therefore, the equations of the system are

pk −
∂Hd

∂q
(qk, pk+1) ∈ ∆

◦
Q(qk), qk+1 =

∂Hd

∂ p
(qk, pk+1), (qk,qk+1) ∈ D . (8)

If ∆Q = T Q and D = Q×Q, comparing equations (8) and (7) proves the following result:

Proposition 2. The trajectories of the (unconstrained) discrete Hamiltonian system (Q,Hd)

correspond to those of the discrete Dirac system
(

Q,DTPd
Q
,Q×Q,ψH

)
.

Remark 4. As before, if D and ∆Q are linked via a retraction on Q, equations (8) are
equivalent to the (+)-discrete nonholonomic Hamilton’s equations considered in [LO11].

Remark 5. If ∆Q = T Q and D = Q×Q, under certain regularity conditions, namely

∂ 2Hd

∂q∂ p
(q, p)

being nonsingular (see [LZ11]), in a neighbourhood of a solution (q̄0, p̄0, p̄1), equation
p0 =

∂Hd
∂q (q0, p1) determines implicitly the value p1 in terms of q0 and p0 and, afterwards,

3We are omitting the adjective ‘right’ everywhere else, since we are using Hd instead of the original H+
d

considered in [LZ11].
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q1 =
∂Hd
∂ p (q0, p1) determines q1. Schematically, (q0, p0) 99K p1 99K q1, meaning that, under

certain conditions, q1 is a function of (q0, p0) and, hence, cannot be arbitrary. This says,
again, that not every choice of x0 = (q0, p0,q1) gives rise to a trajectory.

FUTURE WORK

Here are some topics for future research:

∗ The dynamics of implicit Lagrangian and Hamiltonian systems can be obtained
from a variational principle, as is shown in [YM06b]. For the case of discrete
Lagrange–Dirac and nonholonomic Hamiltonian systems considered in [LO11], the
authors show that their dynamics can also be derived using variational techniques.
We are interested in studying if it is possible to do the same for the discrete Dirac
systems that we considered here.

∗ Under some regularity condition, the existence of flows near a given trajectory is a
well-known fact for both discrete Lagrangian and Hamiltonian systems. We would
like to explore the possibility of a similar result in the context of the discrete Dirac
systems introduced here.

∗ In the continuous setting, reduction of Dirac structures and implicit Lagrangian and
Hamiltonian systems is discussed, for example, in [YM07] and [YM09]. We are
interested in studying symmetries of discrete Dirac systems, and in constructing a
reduction procedure in this new framework.
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