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Abstract. In [1] we gave a realization of the irreducible representations of the symme-
tric group S, on the polynomial ring K [z1, ... ,%,], where K is the field of the rational
numbers or K is a finite field F,, (here p is a prime number). In this work we show that if
G is a finite subgroup of the linear group GL.(K) and K is a field of characteristic zZero,
then each simple G-module over K is isomorphic to a G-submodule in the polynomial
ring K [z,,...,z,]. Furthermore, by making use of certain invariant operators in the
Weyl algebra, we describe a finite dimensional G —space N in K [z1,...,2,] which
contains all the simple G-modules over K.

1. Simple Modules.

Let K be a field of characteristic zero and 7 a natural number. Let us denominate V
the vector space K™. We will denote by A the symmetric algebra of the dual space
V*. If we choose a basis z,,...,, of V*, then the algebra A is identified with the ring
of polynomial functions defined on V. Since K has characteristic Zero, we can assume
that A = K{z,...,z,).

Let G be a finite subgroup of GL,(K).

We have a natural action of G on A given by:

(¢-P)v)=P(c™*v) Pe€AoceGuveV

With K[G] we will denote the group algebra of G over K. We can think of K [G] as
the K-vector space of the functions ¢ : G — K. Hence, we can define an action of G
on K [G] by:

(0-9)1)=p(c™'1) p€eKI[G], 5,7 €q

Definition 1.1: An element v € V is called regular for G ifo-v #vforallo € G, o # 1.
That is to say, v is regular for G if the isotropy subgroup of v is the trivial group.
Proposition 1.2: If K is an infinite field, then there is a regular element for G in V.

Proof: Since K is an infinite field, V cannot be a finite union of proper subspaces, so
the spaces of fixed points of the elements of G different from 1 do not cover V, hence,
there is a regular element for G in V. |

35



Theorem 1.3: There is o faithful morphism of G-modules , ¥ : K[G] — A.

Proof: Since K has characteristic zero, the space V has a regular vector v. Let G-v be
the G—orbit of v. Let us denote by P a polynomial function on V such that:

P(v)=1, (6-P)(v)=0 if 0 #1

Such a function always exists since it is possible to build an interpolating polynomial.
Let G - P be the G—orbit of P in A and let S be the subspace of .A spanned by G - P.
Let us take the function ¢ € K [G] given by :

$()=1, (0-¢) (N =¢(c7") =0 o0 #1

Then G-¢ is a basis for K [G] and besides, the elements of G- P are linearly independent.
If we define:

V(oc-¢p)=0-P

then ¥ extends by linearity to an injective K—morphism of K [G] into A, and ¥
verifies:

V(r-(0-¢)=¥((r0)-¢)=(r0)-P=71-(0-P) VYo,T€G
that is, ¥ : K [G] — S is an isomorphism of G-modules. |

With the notations of Theorem 1.3 we have:

Corollary 1.4 : S contains all the simple left G- modules over K.

Proof: Since K has characteristic zero, we have that K [G] is semisimple. »

2. The space N.

For i inl, = {1,2,...,n} we put §; = 6% the ¢ — th partial differentiation. If « is

a multi-index, that is to say a map a : I, [N Ny where Ny is the set of non-negative
integers, we will write:

QX ol O — 1
T _zll...xgﬂ and 6“_6;’ "’3;:"

The K-algebra of K-linear operators on A which is generated by the multiplications by
the generators z; and the derivations 8; for i = 1,2, ..., n is called the algebra of K -linear
differential operators on A or Weyl algebra in n variables over K and we will denote
it by W.

Proposition 2.1. Each element of W can be written in a unique way as a finite sum:

D apz®®, cop€ K
a,f
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Where o and B are multiindexes.
Proof: See [3] for a proof of Proposition 2.1. u

Definition 2.2. Given a differential operator

D= an,ﬁw" 3"
a,B ’
in W we define the degree of D by:
deg (D) = max {Z (s — Bi) yeap # O}
i=1

The action of G on V* given by:

(0-p)v)=p(c™'-v) forall peV*, 0 €G,veV

induces an action of G on A given by:
(6-H)v)=H(c™ -v) forall HE A c€G,veV

Let us remark that since G acts on A by substitution, this action enables us to interpret
an element of G as a ring homomorphism. Hence, we can define an action of G on
Endyg (A), the ring of K-linear endomorphisms of 4 by:

0-D=coDoo ' forallo € G, D€ Endg (A)

In particular, since §; is an element of Endg (A), we can evaluate o - 9; and we
obtain:

0-0(H) =0 (8H (S My, NNPWENY
=0 (Zpo Mo 8 (H)) = (T2 Ms 0) (H)

That is, o - §; is also an element of W.
Now, let P be an element of W, and let us consider the multiplication by P, putting

P(H) = PH, for each H in A. Remembering that the action of G on A is multiplicative,
we have:

(O’OPOU_I) (H) =0(P (a“l (H))) =a'(P)a((o'“]L (H))) =(0-P)(H)=0-P(H)

Consequently, o o P o o1 is in fact the multiplication by o- P.
Hence, the action of G on Endg (A) is restricted to an action of G on W.
We will denote by Z the subalgebra of invariants of A4, (K ) defined by:

I={De A, (K)/o-D=D,Vo€G}

Let us observe that D € Z, if and only if, D belongs to the centralizer of G in Endy (A).
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With 7~ we will denote the subspace of A, (K) given by:

I ={D €T /deg(D)< -1}

Let NV be the subspace of A defined by:
N={PeA,DP)=0,VD € -}
Then we have:

Theorem 2.3: N is finite dimensional, and every simple G-module of K [G] has a copy
in N.

Proof: Let us consider the ring of invariants K [8,,...,8.]° € K [8,,...,8,]. Since G is
finite, K [0y,...,0,] is an integral extension of K 6y, - .., a,,]G. It follows that for each
index 1 there are operators Dy, ...,Dp_; € K [04,..., Bn]G such that :

O +07 Dy 4+ + 00 Dy =0

It is clear that each D; can be chosen being homogeneous of degree i — m, that is to
say we can assume D; is in Z~. From the above identity it follows that :

O"(P)=0foreach P N

And this shows that N is finite dimensional .

Now, let S be a simple module of K [G] and ¥ as before. Since S is a simple G-
submodule it must be ¥(S) ~ S, and then ¥ (S) is in a homogeneous component
of A. Let m in Ny be the smallest number such that the homogeneous component of
degree m of A contains a submodule 7 2 S. If 7 Z N, then m > 0 and there exists
D € I~ such that D(7) # 0. We can also assume that D is homogeneous of degree
k < —1.Since D is invariant, we have D (T) ~ T ~ S, and D (T) is in the homogeneous
component of degree m + k£ < m — 1 < m. But this contradicts the minimality of m.H

Corollary 2.4: Let us suppose that G acts irreducibly on K®. Let H be a subgroup of
G such that there is a non-trivial linear invariant form for H . Then

i )

Proof: Let ¢ be a non-trivial linear invariant form for H , then the G—orbit of ¢ has
at most %—% = m elements and, from the irreducibility hypothesis, the G—orbit of @ is
a system of generators of the dual space (K )

Let ¢ = ¢y, ..., o the G—orbit of . As in the proof of Theorem 2.3, we can infer that:

0, (P)=0foreach Pe NV
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Then:
: m 1G1\"
dim (M) <m™ < (————IHl

B

In particular, if K = R, G is a Cozeter group of rank n (see [2],[4],[8]) and H is a
Cozeter subgroup of G of rank n — 1, the previous inequality holds since in this case
there is a linear invariant form for H. However, in this situation it is possible to give an
explicit expression for the polynomial interpolator P, as in the proof of Theorem 1.3.

Corollary 2.5: Let us suppose that G is an irreducible Cozeter group, H a subgroup
of G, such that H has index m and rank n — 1. Let ¢ be a non-trivial linear invariant
form for H. Denoting by M; the homogeneous components of A, we have:

(%)
N CPH;

i=1

Proof: We can assume H is the isotropy group of ¢, since the isotropy group of ¢, is,
for a very well-known result, a Coxeter subgroup of G. Let ¢, ..., ¢, be the elements
of the G—orbit of ¢. Let v € R” be such that v is regular for G and it verifies:

i (V) # 0 (v) if i # j
We put:
P w) = IT (o (w) = 03 ()
Then we have P (v) # 0, and for o # 1 in G holds:
P(o(v)) = II (i (0 () — 5 (v) = H ((c7%¢s) (0) — 9 )

There is a permutation « of {1, ...,m} such that o~1¢; = @r(i)- If # =1, then o fixes
point by point the system of generators s, ..., om , hence o = 1. It follows that 7 # 1,
that is to say, there exists a pair 4, with 4 < j such that = (?) = j. We conclude that
if o # 1 then P (o (v)) = 0 holds.

But on the other hand:

deg (P) = (7;)
=

It is possible to show that in the case of the symmetric group of order n, the minimum
degree for which the previous contention is valid is in fact ('2‘ . We conjecture that for
a Coxeter group of G the minimum degree is the number of reflections of G.
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