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Abstract

Nonholonomic systems are described by the Lagrange-d’Alembert principle. The
presence of symmetry leads, upon the choice of an arbitrary principal connection, to
a reduced variational principle and to the Lagrange-d’Alembert-Poincaré reduced
equations. The case of rolling constraints has a long history and it has been the
purpose of many works in recent times, in part because of its applications to robotics.
In this paper we study the case of a symmetric sphere, that is, a sphere where two of
its three moments of inertia are equal, rolling on a plane, using an abelian group of
symmetry. The presence of some impulsive constraints and its effect on the reduced
variables is also briefly studied.

1 Introduction

Reduction theory for mechanical systems with symmetry has its roots in the classical
works on mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poincaré and others.
The modern vision of mechanics includes, besides the traditional mechanics of particles
and rigid bodies, field theories such as electromagnetism, fluid mechanics, plasma physics,
solid mechanics and others of fundamental importance.
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20 HERNAN CENDRA ET AL.

A thorough understanding of the several types of symmetries appearing in those the-
ories, sometimes in an obvious way and sometimes in a very subtle way, provides a deep
insight, in part because reduction theory can give conservation laws and a description in
tems of fewer variables. Much research effort has gone into the development of the sym-
plectic and Poisson view of reduction theory, but recently the Lagrangian view, with an
emphasis on the reduction of variational principles has attracted considerable attention,
Marsden and Scheurle [1993], Cendra, Marsden and Ratiu (CMR)([2001a)].

The universal formalism created by Euler and Lagrange is not applicable to surpris-
ingly simple systems, like those having rolling constraints. The development of a sys-
tematic-theory generalizing those examples leads to a branch of differential geometry,
the geometry of nonholonomic manifolds. However, the systematic treatment of nonholo-
nomic systems and the reduction of d’Alembert principle in the presence of symmetry is
relatively recent, Bloch, Krishnaprasad, Marsden, and Murray (BKMM)[1996]. The task
of providing an intrinsic geometric formulation of the reduction theory for nonholonomic
systems from the point of view of Lagrangian reduction has been established in Cendra,
Marsden and Ratiu (CMR)[2001b]. In this work, the reduced Lagrange d’Alembert equa-
tions, and in particular, its vertical part, the momentum equation, is written intrinsically
using covariant derivatives. The resulting equations are called the Lagrange-d’Alembert-
Poincaré equations. ‘

We have mentioned only a few references directly related to the present work. However
one should be aware that nonholonomic systems have been approached by several people
in recent years, using different techniques some of which are given at the end. Among
them, we mention for instance, Bloch and Crouch[1992, 1994], Cantrijn, Cortés, de Ledén
and de Diego[2000], Cantrijn, de Ledn, Marrero and de Diego [1998], Ibort, de Ledn,
Lacomba, de Diego and Pitanga [1977], Koiller[1992], Koon and Marsden[1997b], Koon
and Marsden[1997c], Lacomba and Tulczyjew{1990], Nefmark and Fufaev[1972], Ibort, de
Leén, Lacomba, Marrero, de Diego and Pitanga [2001].

The present short paper is organized as follows. In section 2, we recall the basic
facts about Lagrange-d’Alembert-Poincaré equations. In section 3, the main section, we
describe the example of the symmetric rolling sphere. It is interesting that this example
has an abelian group of symmetry, which leaves invariant both, the Lagrangian and the
constraint, namely, the group SO(2) x R2. In section 4 we study some impulsive constraints
for the case of the symmetric rolling sphere and show their effect at the reduced level.

2 The Lagrange-d’Alembert-Poincaré Equations

The Nonholonomic Connection. Let n: @ — /G be a principal bundle with struc-
ture group G. It is known and easy to prove that there is always a G-invariant metric on Q.
In many important physical examples there is a natural way of choosing an invariant met-
ric, representing, for instance, the inertia tensor of the system, see Bloch, Krishnaprasad,
Marsden, and Murray {1996]. Now assume that D is a given invariant distribution on Q.
In physical examples this distribution often represents a nonholonomic constraint. We
are going to assume the following dimension assumption, see CMR[2001b],

TQ=D+V,

where V is the vertical distribution. Let S = D N V. We can then define the principal
connection form A : TQ — g such that the horizontal distribution Hor* T'Q satisfies the
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001 '



THE LAGRANGE-D’ALEMBERT-POINCARE EQUATIONS 21

condition that, for each g, the space Hor* T,(Q coincides with the orthogonal complement
H, of the space S, in D,. This connection is called the nonholonomic connection. For
each g € @, let us denote U, the orthogonal complement of S, in V,. Then it is easy to
see that U/ is a smooth distribution and we have the Whitney sum decomposition

TQ=HaSaU.
We obviously have
D=H&S
and
V=8S¢U.

Under the invariance assumption, all three distributions H, S, and U are G-invariant,
S0 we can write,

TQ/G=H/G&S/GaU/G.

The Geometry of the Reduced Bundles. Recall from CMR[2001a] that there is a
vector bundle isomorphism

a4 TQ/G — T(Q/C) @,

where g is the adjoint bundle of the principal bundle @, defined as follows

ax(lg,dle) = Tr(g,9) @ 9, Ag, d)le,

where (g,¢) € TQ and the index G denotes equivalence classes under the action of ‘G.
Notice that the bundle T(Q/G) @ g does not depend on the connection A, however, the
vector bundle isomorphism o 4 does depend on A. It is easy to see that

as(H/G) =T(Q/G),

and
aa(V/G) =g.

Define the subbundles § and u of g by

5= a,(S/G)
and
u=as(U/G)
respectively. Clearly, we have,
g=5®du.

Also recall from CMR[2001a,b] that the bundle § has a structure defined as follows

a. A Lie algebra structure on each fiber of g defined by

[[q7 él]G ) [Qa 52}G] = [q7 [517 gQ]]g
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22 HERNAN CENDRA ET AL.

b. A covariant derivative of curves on g, given by

D 9(0), 60l = [at0), 1A, 6(6)), 0] +€0)] .

The corresponding connection in g is denoted VA,
c. A g-valued 2-form BB on the base Q /G defined by
B <($> i/'l)a (Ia 1'2)) = [Q1 B ((IL', 331)2» (iL', xZ)Z)] le]

where g satisfies [¢l¢ = @, (z, j:i)g is the horizontal lift of (z,z;) at the point g, for
i=1,2, and B is the curvature of A.

Now let L: TQ — R be a given invariant Lagrangian. Then it naturally induces a
reduced Lagrangian ¢: TQ/G — R. Via the identification given by the vector bundle
isomorhism a4 we will often think of ¢ as being a map ¢: T(Q/G) ® § — R, or, with
the usual notation in terms of variables, £(z,,%). We should remark that z, £ and ¥
are not independent variables, unless T(Q/G) and § are trivial bundles, see CMR[2001a].
Finally, given any connection V on @/G we have a naturally defined connection VeV4on
T(Q/G) ® §. It is with respect to this connection that the covariant derivatives appearing
in the following theorem, like

%t D ¢

—3—2-($,$,’U) and _l_)—té;(

should be understood. See for instance Kobayashi and Nomizu[1963] or CMR[2001a, b]
for details.

The following theorem CMR[2001b] is the main result that we need to study the
symmetric rolling sphere in the next section.

z,%,)

Theorem 2.1 Let q(t) be a curve in Q such that (q(t),q(t)) € Dyy for all t and let
(z(t), 2(t), 5(t)) = a4 ([q(t),4(t)]c) be the corresponding curve in T(Q/G) ®5. The fol-

lowing conditions are equivalent.

(1) The Lagrange-d’Alembert principle holds:

1
5 / Lig,§)dt = 0
.

0

for variations §q of the curve g such that 8q(t;) =0, for it = 0,1, and dq(t) € Dy),
for all t.

(ii) The reduced Lagrange-d’Alembert principle holds: The curve z(t) ® 0(t) sat-
isfies

5 /t 0 (o), 3(8), 5(8)) dt = 0,

for variations 6z @ 64T of the curve x(t) ® (t), where 640 has the form

D7 ~ )
Az o
540 = =1+ [o,7] + Bz, )

with the boundary conditions dz(t;) = 0 and 7(t;) = 0, for ¢ = 0,1, and where
ﬁ(t) € gI(t)'
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(iii) The following vertical Lagrange-d’Alembert- Poincaré equations, correspond-
ing to vertical variations, hold:

H

5 = ad; —U(x,a':,z‘))

and the horizontal Lagrange-d’Alembert- Poincaré equations, corresponding
to horizontal variations,

&, . Do, . Jor, .
gz—(w,a:z;,-v) — Egi(x,m,v) = <(—9—1_}(x,a:,v),1,~;8(x)> :

hold. o

In part (ii) of this theorem, if ¥ = [g;v]e with v = A(g, ) then 7 can be always written
7= (¢, e, and the condition 7(t;) = 0 for i = 0, 1, is equivalent to the condition n(¢;) = 0
for 7 = 0,1. Also, if z(t) = [g(t)]¢ and 7 = [q, V] where v = A(q,q), then variations
6z & 69 such that

e — Dﬁ N _ E [q> ";]G
A o—
3 = Dt + [7,7] = “Di + g, [v, e

with 7(t;) = 0 (or, equivalently, 5(t;) = 0) for = 0,1, and 7(t) € 5, correspond exactly
to vertical variations dg of the curve g such that o0q(t;) = 0 for 1= 0,1, and 6q(t) € Sq(t)
while variations 6z & 6% such that

545 = B(6z, %)

with dz(t;) = 0 for i = 0, 1, correspond exactly to horizontal variations dq of the curve g
such that dq(¢;) = 0.

3 The Symmetric Rolling Sphere

Kinematics of the Rigid Body. The configuration space for the rigid body is the
group SO(3). The motion of the rigid body is given by a curve A(t) on SO(3). The space
angular velocity & and the body angular velocity §) are elements of the Lie algebra s0(3)
and they are defined by the conditions A = A = & A.

We recall that there is a natural identification ™ R — s0(3) given by

t={ & 0 -z' |,

where z =z e; +2%ey + 23 €;.
We have the formulas
—

A 1 .. .
T xy=|z7], $~y=—§trxy and Zy=zxzxuy.

Besides, if A is any element of SO(3) and z is any element of R® we have

—

Az = AzA™L
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24 HERNAN CENDRA ET AL.

For any motion A(t), define z(¢) = A(t) es. Then
t=Aes=0z=wx 2

We have that (w, z) = (2, es3) = Q°, and that A(Q'é; +0%&)A™! = (z x ). Therefore
the space velocity w can be written w = AQ and then w = Q%2 + z x £. This gives a
decomposition of w as a sum of its component parallel to z plus its component normal to
Z.

Kinematics of the Rolling Sphere. The configuration space for the rolling sphere is
SO(3) x R

We shall often identify the factor R? with the subspace of R® defined by z® = 0. The
nonholonomic constraint is given by the distribution

Diaey) = {(A,z, A, 1)|ires — & = 0}

The symmetry group is SO(2) x R?, where SO(2) is identified with the set of elements
of SO(3) of the type

cosp —sing 0
singp cosep O
0 01

The group SO(2) x R? acts on SO(3) x R? by
(4,2)(g,a) = (Ag,z +a).

With this action SO(3) x R? becomes a right SO(2) x R?-principal bundle.
The map 7: SO(3) x R? — 52 given by m(A,z) = Aejs is a submersion. We have an
identification SO(3) x R?/S0(2) x R? = 5? given by

[A, z]s0)xme = Aes
The vertical distribution V is given by
Viam = {(A,5,4,5)|A = Atés, € € R}
The vector bundle S = DNV is given by
Sazy = {(A x, Alés, €z x re3)|§ € R} .

—

The adjoint bundle s0(2) x R? is a trivial bundle and we have an identification

50(2) x R2 = 52 x (s0(2) x R?)

given by

[A) z, £é3a a’]SO(2)><]R2 = (Z,feg, a) y
where z = Ae;s.
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Now we define the connection A given by

AA, 2, A §) = (2%, & — A(Q'é; + 0%8y) A rey)

= (W%e3,2 — (2 x 2) x res).

We can easily see that the horizontal distribution H for this connection satisfies D = S&H.
The vector bundle isomorphism a4 described in CMR[2001a,b] is given by

a4 ([A,CC,A, ﬁ]SO(z)xRZ) =(z,2) ® (2,0),

where ¥ = (vpé3,v1), with vy = Q3 and v; = & — (2 x 2) x res.

- N

The subbundle 5 C s0(2) x R? is given by

5= {(2,£83,6z x re3)|t €R, 2 € 5%}

Now we shall describe the structure of the bundle s0(2) x R2. First of all, the Lie
algebra structure on each fiber of s0(2) x R? is abelian because the Lie algebra s0(2) x R2
is abelian. e Lo o |

Let (z,£é3,a) be a curve on s0(2) x R2. Using the formula for the covariant derivative,
and using the fact that the group SO(2) xR? is abelian, we see that the covariant derivative
of this curve is given by

D (Z, f é3, CI,)
Dt

Now we shall calculate B. To calculate the curvature B, let

= (Z)éé‘g,(i).

Xi(A,z) = (A;x,AQi, A(Qe, + Qfég)A“lfreg) ,

where ; = Q&1 +Q%6,, i = 1,2 are fixed, be given horizontal vector fields. Consider the
decomposition X;(4,z) = Xi1(A4,z) + X;2(A, z), i = 1,2 where X;;(A, z) = (4, z, AQ;, 0)
and X;2(4,7) = (4,2,0, A(Q}é, + Q28;)A~1rés) . It is easy to see that the Lie bracket
[X1, X5] is given by the formuls,

(X1, Xo] = (DXn1 - X11 — DX1y - Xo1, DXog - X1z — DXy - Xy3).

After some calculations we obtain
[X],XQ] = (A [Ql, Qg} ,2A [Ql, Qz] A_l’l“eg.)
A . FNRE:
Note that [Ql, Qg] = [Ql, Qg] 3. Since the group is abelian the curvature is given by
B= '—Ar([XbX?D :
See Kobayashi and Nomizu[1963)] for details. Therefore, we obtain

B=— ((Q1 x 05)%83, 24 [Ql, s‘z2] A_lreg) .

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001



26 ) HERNAN CENDRA ET AL.

Let 2, = Ales = w; X z and note that w; = z x % and that (w;, z) =0, for ¢ = 1,2. Then
we have

(Ql X 92)3 = (Ql X Qz,Gg)
= (W X wey, z)
= {(z X ) X (2 X 23),2)
= <21 X ZQ,Z)

and also

24 (Qﬂz) A_l'f'eg = 2(001 X (UQ) X res

=2((z2x 1) x (2 X 2)) X Teg
= 2(21 X 22) X res.

From this we easily deduce that

B(Zl, 22) = — (Z, (Zl X 22,Z>é3,2(21 X 22) X 7"63)

Dynamics of the Rolling Sphere. The Lagrangian for a general nonhomogeneous
rolling sphere is given by

LAz, A i) = %(m,n) + %Ma’cg,

where
Ii 0 0
I=1 0 L 0
0 0 I3

is the inertia tensor and M is the mass of the sphere.

In this article we will consider only the case of an axially symmetric sphere where
I; = I,. This has the advantage that the Lagrangian is invariant under the right action
of the abelian group SO(2) x R?, which also leaves the constraint D invariant.

The reduced Lagrangian #(z, £,7) is given by

1 1
L%+ =

0(z,2,0) =
(z,2,0) : 5

1
I + §M (v1 + (2 X 2) x res)?
where 7 = (vo8s, v; ), With v; = vie; + v?e,.
Now we introduce the following dimensionless quantities

7.2

I3
a—z, B—T and y=

218

Since the group is abelian the vertical Lagrange—d’Alembert-Poincaré equation becomes

Dot
Dtos|,

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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We shall often identify £€&; = &; thus an element (z,v083,v,) of 5 is written simply

(z,vg,v1). We have
07 o¢ o¢
7~ (5o ) W

= (2, Isug, M (v1 + (2 X 2) X res)) (2)

Since ¥ € § we have 7 = (z,vg, vpzX7e3). Since 5 is 1 dimensional we have that (2,1, zxres)
is a nonvanishing section of § that generates 5. Then the vertical Lagrange-d’Alembert—
Poincaré equation becomes

o (2, 13v0, M (voz X res + (z X 2) X re3)) - (2,1,2 X Tes) = 0.

Since w = vgz + z x Z the vertical equation becomes
Isto + M(w x 7e3) - (2 x Tez) = 0.
Since & = w X re; we obtain
I3vg + Mz - (z x re3) =0
or
I3vg = (2, MZ X res).

Observe that MZ x res is the momentum of the force M#% at the point of contact with
respect to the center of the sphere, thus (z, Mi x re;) is the momentum of that force
with respect to the axis z.

In terms of the adimensional quantities introduced above, the vertical equations be-
come

aty = B(jj x e3, 2),
where g = w X €3, w = vz + 2 X 2, and therefore, §j = (992 + o2 + 2 X %) X ej.

Now let us calculate the horizontal Lagrange-d’ Alembert—Poincaré equation. We can
decompose the reduced Lagrangian as follows #(z, 2,7) = €y(z, 2,7) + £y(z, 3,7), where

. 1.
Eh(z, Z,’U) = 5[122
and
L 1., 1 . 2
0,(z,%,0) = §I3’UO -+ EM(UI + (2 x 2) x reg)”.
A standard calculation shows that
ol D Ot .
B Dior - AV

where we have used the identification of tangent vectors to S2 with covectors via the
standard metric of S2.
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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We have
oe,

0z

Since 7 € 5,, we have © = (z, 9, Uoz X Te€3), therefore we obtain

0z =M (v1 + (2 x 2) x re3) - ((6z x 2) x res).

oL,
0z

-0z =M (wx re;z) - ((6z X 2) X res) .

Using the fact that £ = w X res we deduce that

oL, : .
Ep bz =6z (2 X (reg x Mt)).
We have .y
8; 202 =M (v + (2 x ) x res) - (2 x §2) x reg).

Since 7 € 5,, we have 7 = (z, g, Yoz X res), therefore we obtain

o¢,
0z

0z =M (w x re;) - ((z x 02) x res)
=0z ((res x M) x z).
The horizontal Lagrange—d’Alembert—Poincaré equation is
0t Dot 0f
2 (B
5z Dtds b ( 2 ))
Collecting the above results the left hand side of this equation is

8¢ Dot . . )
5 Digs ~ liVit+2Mr (2 x (e3 X (w x €3))) + z X (reg x MZ).

and the right hand side is
oL (.
FH (B(z,&z)) =
(2, Isvo, M{v1 + (2 X 2) X Te3)) - (2, — (& X 0z, 2), —2(% x §z) x re3))

Since ¥ € §,, we have v; = vz X res. After some calculations, we obtain the horizontal
equation in the form

IiV;z = I3vp(z X 2) + Mr(Z X e3) X z.

In terms of the dimensionless quantities defined before we obtain the horizontal Lagrange—
d’Alembert-Poincaré equation

Vi = av(z x ) + B(§j ¥ e3) X z.
where V is the covariant derivative with respect to the standard metric in S2. Recall that

V:2 =% — (z,%)z, and therefore 2 X Z = 2 x V2.
Actas del VI Congreso Dr. A. A. R. Monteiro, 2001
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Summarizing, we have obtained the following system of reduced equations in terms of
the variables z and vy

oty = B{J X e3, z)
V:iz=ovo(zx )+ [(J X e3) x z

W=1Uz+2X2

Y=wXes

The previous reduced system of equations, of which the first two are the vertical and
horizontal Lagrange-d’Alembert-Poincaré equations respectively, completely describes
the motion in terms of the variables (z,19) € S? x R. By transforming this reduced
system appropriately and using the fact that the reduced Lagrangian £(z, 2,7) is a pre-
served quantity, we obtain an equivalent single second order differential equation on 52
We shall not write a detailed description of this equation in the present paper.

4 Impulsive Constraints

The dynamics of systems with impulsive constraints has been widely treated in classical
and also recent books, Painlevé{1930], Appell[1953], Nefmark and Fufaev[1972]. Geomet-
ric aspects of this kind of questions have been studied recently for instance in Lacomba
and Tulezyjew[1990], Ibort et al.[1998], Ibort et al.[2001.]

It seems also interesting to have direct information on the effect of impulsive con-
straints on reduced variables, which we shall show next. In this section we consider a
simple example, namely, the elastic collision of the symmetric rolling sphere on the plane,
against a vertical rough wall located at z' = 7. In other words, the allowed values z of
the point of contact of the sphere with the plane, must satisfy 2! < 0, since the radius
of the sphere is 7. We shall use the dimensionless quantities introduced above, so r = 1,
Iy =1, I3 = a and M = 3. With normalized coordinates y in the plane, the configuration
constraint becomes ' < 0.

Let us assume, with no essential loss of generality, that, an instant before the moment
the sphere hits the vertical wall, the velocity in configuration space is (Ao, Yo, Ao, %0) =
(Ao,0,0040,%0) = (wo, o), where §§ > 0. We want to determine the velocity an instant
after the collision, (A1, 1, A1, 91) = (Ao, 0, &1 A0, 11) = (w1, 11).

The intersection of the constraint D and that given by the rolling of the sphere on the
plane y* = 1, at the point (Ao, Yo), is the 1-dimensional subspace C of D generated by the
vector (Ao, 0, %Ag, v) = (u,v) where u = (1,0,1) and v = u x e, that is, v = (0, —1). We
need to find the decomposition of (wo, o) as the sum of a component parallel to C plus a
component orthogonal to C, with respect to the metric given by the kinetic energy. We
know that this kinetic energy metric at any tangent vector (Ag, 0,0 A, %) is given by

2L(Ao,0,040,9) = 2° + ad + B3,
where zy = Apes, 2 =w X zp and vp = {w, 20). It is clear that
2L(Ao, 0, Ao, ) = (avozo + 20 X Z, U020 + 20 X £) + (BY, 9).

To be precise,let us call K(-,-) on Ti4,0) (SO(3) x R) the metric associated to the kinetic
energy, so that we can write :

K ((Ao,0,0A0,79), (Ao, 0,0A0,9)) = 2L(As, 0, Ao, 9).

Actas del VI Congreso Dr. A. A. R. Monteiro, 2001



30 HERNAN CENDRA ET AL.

Then we have that the component of (wg, 7o) parallel to (u,v) with respect to the metric
given by the kinetic energy is given by A(u,v), where

)\ = K ((wo, %), (u,v))
K ((U, v)y (U, ’U)) .

We can easily see that

K ((wo,90), (u,v)) = {cwoozo + 20 X 20, u) + (Byo, v)
and
K ((u,), (u,v)) = v + (a — 1)(u, 20)? + B{v,v),

where Voo = (wo, Z()) and 20 = wp X 29.
For an elastic collision we have that the component of (wg, o) parallel to (u,v) is
preserved while the component normal to (u,v) changes its sign. Therefore, we obtain

(w1, %) = 2\ (u,v) — (wo, Yo)-

From this it follows immediately that A(w,y) = (w1, %) —(wo, Yo) can be written as follows

A(w’ y) =2 ()\(’U,,’U) - (wo, yO))

Now we shall see the effect of the collision on the reduced variables (z,vo). It is easy to
see that z does not change during the collision. On the other hand we have, in general,
vp = {w, ). The difference

A(2,v0) = (21,v01) — (%0, Voo)
where vy = (w1, 20), is given by
A(z,v0) = (Aw X 20, {Bw, 20))

Since
Aw = 2 (Au — wp)

we obtain,
A(z,v9) =2 (A(—23, 25 — zg,zgj ~ wy X 20, M2 + 23) — {wo, 20)) -

Since we know that wg = vpozo + 20 % % and Yo = wy X €3, it follows that the value of the
reduced variables (2, vp;) after the collision, only depends on the value of the reduced
variables (2, vgo) before the collision.

The particular case in which a = 1, is easier, and has been studied long ago. See for
instance Netmark and Fufaev [1972] and Ibort et. al [2001]. For instance, in Ibort et. al
[2001], the ball is assumed to stay in the half space z; > r, in our notation. Then, to
compare with the results of the present paper, we must take u = (—1,0,1) and v = (0, 1).
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