

INFORME TECNICO INTERNO

Nº. 15

INSTITUTO DE MATEMATICA DE BAHIA BLANCA INMABB (UNS - CONICET)

UNIVERSIDAD NACIONAL DEL SUR

Avda. ALEM 1253 - 8000 BAHIA BLANCA

República Argentina

I.T.I. Nº 15

ON CERTAIN SPACES OF DIFFERENTIABLE FUNCTIONS

VANISHING ON THE BOUNDARY

by

A. Benedek and R. Panzone

INMABB

UNS - CONICET

1988

ON CERTAIN SPACES OF DIFFERENTIABLE FUNCTIONS

VANISHING ON THE BOUNDARY

by A. Benedek and R. Panzone.

1. INTRODUCTION. In [B] we introduced for Ω a bounded domain with $\overset{\infty}{C}$ boundary, $1\leq p<\infty,$ r and s positive integers, r < s, the space

$$\mathsf{W}^{\mathsf{p}}_{\mathsf{r},\mathsf{s}}(\Omega) := \mathsf{W}^{\mathsf{r},\mathsf{p}}_{\mathsf{o}}(\Omega) \cap \mathsf{W}^{\mathsf{s},\mathsf{p}}(\Omega).$$

We proved that it coincides with the closure in $\mathbb{W}^{s,p}(\Omega)$ of the family of functions

(2)
$$D_{\Gamma}(\Omega) := \{ \varphi \in C^{\infty}(\overline{\Omega}) : D^{\alpha} \varphi = 0 \text{ on } \partial \Omega, |\alpha| < r \}.$$

We owe to Professor A. P. Calderón a comment to our paper where he pointed out that the space $\mathbb{W}^p_{r,s}(\Omega)$, $1 , is the (closed) subspace of <math>\mathbb{W}^{s,p}(\Omega)$ formed by the functions verifying

(3)
$$D^{\alpha}f = 0 \quad \text{a.e. } \partial\Omega \text{ for } |\alpha| < r.$$

This result can be proved using [C], especially Theorem 11. The aim of the present note is to supply the details for the preceding characterization of the space $\mathbb{W}^p_{r,s}(\Omega)$. Observe that the definition (1) can be given also for r = s and in that case $\mathbb{W}^p_{r,r}(\Omega) = \mathbb{W}^{r,p}_0(\Omega)$. We prove

THEOREM. Let $f \in W^{s,p}(\Omega)$, $1 \le n \le s$, $1 \le p < \infty$. $f \in W^{p}_{n,s}(\Omega)$ if and only if $\ln \widehat{D}^{\alpha}f = 0$, $|\alpha| < n$.

The trace operator will be defined in §3.

2. THE REGION Ω . We shall use E. Gagliardo's work [G]. In this section we show that our region satisfies his hypothesis.

In our case each $x^{\circ} \in \partial \Omega$ has an open neighborhood U, homeomorphic to the unit ball by an application $\Phi \colon U \to B = \{y \in R^{\cap}; \ |y| < 1\}$ such that $\Phi \in C^{\infty}(U)$, $\Psi := \Phi^{-1} \in C^{\infty}(B)$, and $\Phi(U \cap \Omega) = B^{+} := \{y \in B; \ y_{n} > 0\}$. We have then for $x = (x_{1}, \dots, x_{n}) \in U$, $\Phi(x) = (\phi_{1}(x), \dots, \phi_{n}(x))$ and $x \in \Omega \cap U$ iff $\phi_{n}(x) > 0$; $x \in \partial \Omega \cap U$ iff $\phi_{n}(x) = 0$; $\nabla \phi_{n}(x) \neq 0 \ \forall x \in U$. Therefore there

exists h such that $\frac{\partial \Phi_n}{\partial x_h}(x^o) \neq 0$. We may suppose without loss of generality that $x^o = 0$, h = n and $\frac{\partial \Phi_n}{\partial x_n}(0) > 0$. Let us consider the map

(4)
$$\eta : x = (x^{\dagger}, x_{n}) \rightarrow (x^{\dagger}, \phi_{n}(x)) =: y$$

with $x' = (x_1, \dots, x_{n-1})$, $x \in P := \{|x_i| < d_i, i = 1, \dots, n\}$ and the parallelepiped P contained in U.

If the d_i's are adequately chosen, $\frac{\partial \phi_n}{\partial x_n}(x) > 0$ in P and η defines a C[∞] homeomorphism with a C[∞] inverse χ of the form

(5)
$$\chi: y = (y', y_n) \rightarrow (y', \chi_n(y)) = x.$$

The equation of the boundary $\partial\Omega$ Π P is then

(6)
$$x_n = Y(x^i) := X_n(x^i, 0), \quad x^i \in P^i := \{|x_i| < d_i; i < n\}.$$

Since Y(0)=0, we may take, for fixed d_n , P'so small that $\left|Y(x^i)\right|<\frac{d_n}{2}$ in P'. Then the C homeomorphism

(7)
$$\begin{cases} X_{n} = (x_{n} - \gamma(x^{\dagger})) \frac{2}{d_{n}}, \\ X_{j} = x_{j}/d_{j}, j < n \end{cases}$$

carries the neighborhood R_{Ω} of x° defined by

$$R_0 := {\gamma(x') - (d_0/2) < x_0 < \gamma(x') + (d_0/2), x' \in P'}$$

into the parallelepiped

R := {
$$|X_i| < 1$$
, $i = 1$, ..., n }

and the images of Ω \cap R_{0} and $\partial\Omega$ \cap R_{0} are respectively

Q :=
$$\{|X_i| < 1 \text{ for } i < n, 0 < X_n < 1\}$$

and

S := {
$$|X_i| < 1 \text{ for } i < n, X_n = 0$$
}.

In consequence, a finite open covering $R_j,\ j=1,\ldots,\,N,$ of $\partial\Omega$ can be obtained in such a way that each R_j maps homeomorphically onto R_j while the images of R_j Ω and R_j Ω are Q and S respectively. So Gagliardo's hypothesis is fulfilled, since these homeomorphisms are C^∞ in both ways. We shall denote them by $\Phi_j.$ A set $A \subseteq \partial\Omega$ is said to have surface measure zero if for every j, $\Phi_j(A \cap R_j)$ has measure zero in the (n-1)-dimensional surface S.

3. THE TRACES. Using a partition of unity and the maps Φ_j one can verify that it is enough to define the restriction to S of a function in $W^{S,p}(\mathbb{Q})$ to give a meaning to the restriction of $u \in W^{S,p}(\Omega)$ to $\partial\Omega$. That is tr u. Now if $f \in W^{S,p}(\mathbb{Q})$ then $D^{\alpha}f \in L^1(\mathbb{Q})$ for $|\alpha| \leq s$. So by Th. V pg. 57 [S], there is a representative of its class which is absolutely continuous on every segment $\{(x',t); 0 < t < 1\} \subset \mathbb{Q}$. We shall call such an f a prototype of its class. For a prototype, $\frac{df}{dt}(x',t) = \frac{\partial f}{\partial x}(x',t) \in L^1(0,1)$ for almost all x'. In consequence, there exists the limit:

$$\lim_{t \to 0} f(x^i,t) =: (tr f)(x^i) =: f(\tilde{x}^i,0), \quad \text{a.e. } x^i \in S.$$

Besides, tr f does not depend of the prototype chosen. In [G] (footnote 7), p. 288) the following Lemma is proved.

LEMMA 1. Let $1 \leq \rho < \infty$ and $f \in W^{1,\rho}(Q)$. Then to $f \in L^{\rho}(S)$ and

(8)
$$||tr \not L; L^{p}(S)|| \leq C_{p} ||f_{i} w^{1,p}(Q)||.$$

Another way of defining the trace is the following. If $u \in C^{\infty}(\overline{\mathbb{Q}}) \cap W^{s,p}(\mathbb{Q})$, we define $\text{Tr } u(x',\mathbb{Q}) = u(x',\mathbb{Q}) = \text{tr } u(x',\mathbb{Q})$. For $u \in W^{s,p}(\mathbb{Q})$ take a sequence $\{\phi_m\}$ such that $\phi_m \in C^{\infty}(\overline{\mathbb{Q}}) \cap W^{s,p}(\mathbb{Q})$, $\phi_m \to u$ in $W^{s,p}(\mathbb{Q})$, and define

Tr
$$u := \lim_{m \to \infty} \operatorname{tr} \phi_m$$
.

Inequality (8) shows that this limit exists in L $^{
m p}$ (S) and coincides with tr u.

4. THE MAIN RESULT.

LEMMA 2. Let $f \in W_{r,s}^{p}(Q)$, $supp f \subset R$, $1 \le r \le s$, $1 \le p < \infty$. Then $tr \ D^{\alpha}f = 0$ for $|\alpha| < r$.

PROOF. There exists $\{\phi_j\} \subset D_r(Q)$ such that $D^{\alpha}\phi_j \to D^{\alpha}\phi$ in $L^p(Q)$, $|\alpha| \le s$. For $|\alpha| < r$ we have $\| \operatorname{tr} D^{\alpha}f - \operatorname{tr} D^{\alpha}\phi_j ; L^p \| = \| \operatorname{tr} D^{\alpha}f ; L^p \|$, and from (8) we get the thesis, QED.

LEMMA 3. Let $f \in W^{s,p}(Q)$, supp $f \subset R$, $1 \le n \le s$, $1 \le p < \infty$, to $D^{\alpha}f = 0$ for $|\alpha| < n$. Then $f \in W^{p}_{n,s}(Q)$.

PROOF. Let E be a strong s-extension for R_n^+ . That is, a linear operator mapping functions defined in R_n^+ into functions defined in R_n^0 such that for every p, $1 \le p < \infty$, and every k, $0 \le k \le s$, verifies

ii) $D^{\alpha}Eu = E_{\alpha}D^{\alpha}u$, $|\alpha| \leq s$, where E_{α} is an operator similar to E but acting on $W^{s-|\alpha|}$, $P(R_{n}^{+})$,

iii) if u(x',t) is continuous in $t \in [0,\epsilon)$ for fixed $x' \in R_{n-1}$ then Eu(x',t) is continuous in $t \in (-\delta,\epsilon)$, $\delta > 0$, (cf. [A], pp. 83-88). A function $f \in \mathbb{W}^{s,p}(\mathbb{Q})$ with $\overline{\sup f} \subset \mathbb{R}$ can be trivially extended to $\mathbb{W}^{s,p}(\mathbb{R}_n^+)$. Let $f_{\epsilon} := Ef * \phi_{\epsilon}$ where $\{\phi_{\epsilon}\}$ is an approximation of δ . Then $f_{\epsilon} \to Ef$ in $\mathbb{W}^{s,p}(\mathbb{R}_n^+)$.

Let \hat{f} be the trivial extension of f to R_n . For $|\alpha| \leq r$, $\varphi \in C_0^\infty(R_n)$, we have

$$\begin{split} & <\widetilde{f}, D^{\alpha} \varphi > = \lim_{\varepsilon \to 0} \int_{x_{n} > 0} f_{\varepsilon} \cdot D^{\alpha} \varphi \ dx = \\ & = \lim_{\varepsilon \to 0} \left[(-1)^{|\alpha|} \int_{x_{n} > 0} D^{\alpha} f_{\varepsilon} \cdot \varphi \ dx + \int_{|\gamma| + |\beta| < r} C_{\gamma\beta} \int_{x_{n} = 0} D^{\gamma} f_{\varepsilon} \cdot D^{\beta} \varphi \ dx' \right] = \\ & = (-1)^{|\alpha|} \int_{x_{n} > 0} D^{\alpha} (Ef) \cdot \varphi \ dx + \int_{|\gamma| + |\beta| < r} C_{\gamma\beta} \lim_{\varepsilon \to 0} \int_{x_{n} = 0} (tr \ D^{\gamma} f_{\varepsilon}) \cdot D^{\beta} \varphi \ dx' = \\ & = (-1)^{|\alpha|} \int_{x_{n} > 0} D^{\alpha} f \cdot \varphi \ dx + \int_{|\gamma| + |\beta| < r} \int_{x_{n} = 0} (tr \ D^{\gamma} f) \cdot D^{\beta} \varphi \ dx' = \\ & = (-1)^{|\alpha|} \int_{x_{n} > 0} D^{\alpha} f \cdot \varphi \ dx + \int_{|\gamma| + |\beta| < r} \int_{x_{n} = 0} (tr \ D^{\gamma} f) \cdot D^{\beta} \varphi \ dx' = \\ & = (-1)^{|\alpha|} \int_{x_{n} > 0} D^{\alpha} f \cdot \varphi \ dx. \end{split}$$

This means that $D^{\alpha}\tilde{f} = \widetilde{D^{\alpha}f}$ for $|\alpha| \le r$ and so $\tilde{f} \in W^{r,p}(\mathbb{R}^n)$. Since $f = \lim_{\epsilon \to 0} \tilde{f}(x^r, x_n - \epsilon)$ in $W^{r,p}(\mathbb{R}^+)$, we get $f \in W^{r,p}(\mathbb{R}^+)$, QED.

The theorem follows from Lemmas 2 and 3 and the localization described in §2. Observe that properties ii) and iii) are not used in the proof of Lemma 3.

REFERENCES

- [A] ADAMS, R.A., Sobolev spaces, Academic Press, (1975).
- [B] BENEDEK, A. and PANZONE, R., An approximation theorem for certain subsets of Sokolen spaces, ITI N° 12.
- [C] CALDERON, A.P., Lekesgue spaces of differentiable functions and distributions, Proc. of Symposia in Pure Math., AMS, (1961), 33-49.
- [G] GALGIARDO, E., Canatterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, (1957), 284-305.
- [S] SCHWARTZ, L., Théorie des distributions, I, Hermann, (1950).