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ON THE MEASURE OF SELF-SIMILAR SETS

by Pablo A. Panzone

Abstract. We exhibit a method by which we can approximate the
Hausdorff measure of a certain class of self-similar sets .

gllntroduction: Imn 1. we show a procedure for approximating

the measure of a certain kind of self-similar sets. In 2. we use
these methods to show that if K is the Koch curve then

0.26 5}{5(K5 Y 0.598 (example 2). We calculate in an exact

way the measure of certain self-similar sets in Rz(example 1).
Despite the fact that we repeate arguments and use ideas
borrowed fram the works of Hutchinson [Hut 1 and Marion [ Mar 13,
on the whole the method shown seems to be new.

1. The Hausdorff metric is defined on the collection of all non

n
empty compact subsets of R by

dH(E,F)=inf {t: F c [E]t and E ¢ [F]t 3
where [E] = {x € R" sinf |x-y||=d(x,y)<t } and [*|] ¢ dCese) ) is
YeE
the usual norm (distance). We shall write Fj_—ﬁ—>K instead of
d (F_,K)===—=~ >0.
Jo—ow

We state here the well-known selection theorem due to
Blaschke:

Ljﬁ:arge an infinite collection of non empty compact

sets all lying in a bounded portion B of Rn - Then there exists
a sequence {Fj} of distinct sets of‘rlnnvergent in the Hausdor ff
metric to a non—empty compact set K.

For a proof see page 37 of [Fall].

IAI denotes the diameter of a set A c Rn andJHfS(v)

its s-Hausdorff measure.

« 1 »



A convex body is a compact convex set with non-empty

interior.
We use l to indicate the end of a proof.
The following is a corcllary of Blaschke theorem.

Lemma 1: Let F. be a sequence of compact convex non-empty sets
i

of Rn such that
a) lim |F_|=a > 0
. i
i—>w

b} There exists a compact convex set F such that

FiE F for all i

Then there exists a subsequence Fi such that
J

i) F ——————— > K, K compact and convex

Proof: By the mentioned Blaschke selection theorem we know that

there 1s a subsequence Fi such that Fi ————— > K where K is a
b J H
non—empty compact set. Obviously K ¢ F. As F_———-> K, we have
- i
j H

d (F. ,K)<e with € --> 0. But then K ¢ [F. ]
i 3 J - i

H €

3 B |

for all j (notice that [Fi ]e are compact convex sets) and

Thus ‘Klﬁa. Suppose that |K|<a. Since Fi c [K]E
3 3

we have IFi |£|[K]e | which is absurd taking limits.
3 J

This proves 1i) and 11i).
We now prove that K is convex. Observe that [Fi ]
J J
tends in the Hausdorff metric toc K because
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<
dH(K’[Fi_]e_ ) £ dH(K’Fi_ ) o+ dH(Fi_’[Fi_JE_ )
j 3 J 3 j oJ

Thus given € > O we have j_ such that

iv
| &

[F. 1] c [KI_ if j

Then n [Fi ]E c K. The inclusion Kech [Fi ]e
J J i 3

was already established. This finishes the proof of the lemma

Let K be a compact set in Rn such that JH?S(K) o
(s > O0). Define for 8§ > 0O :
=
H(8) == sup JH (K n Cs)

C8 compact convex
set of diameter §

This function is the key to measure self-similar sets.
Theorem 1: p(8) is continuous from the right and non-decreasing
[ 0 o
and for any &§ > 0O u(6)==J{ (K N CS) where CS is a particular

compact convex set of diameter § .

Morover if for any compact convex set C we have

HSkknoco =o0
then p(8) is continuous.
Proof = From the definition of p(8) we know that there exists a
sequence C; of compact convex sets of diameter §, all lying 1in a

n
bounded portion of R , such that
w(s) = lipm JEo(k nct )
i-—DJw &
o
By lemma 1 there exists C8 a compact convex set of diameter &
1.

i
and a subsequence CSJ of CS such that



p=1 =3 ]
But KN C = 11
ut M« s ) = lig, F "k n [Cy 1, k)
ij 0
d Cc c i 1 is 1 h wi k fi .
an 5 c s ]1/2k if lj is large encugh with fixed

o
Then u(s) = M n Cq )
From this one easily gets that p(8) is non—decreasing.
Let 6 > 0 and Si 20 5 1= 1,2,;3,.:. Si-—> &,
Then
S a . .
ps ) =H xn Cg ) if i =0,1,2,3,...
J
o .
with CS a compact convex set of diameter Sj lying in a boun-
J

ded portion of Rn,

[+]
From the sequence CS we can extract by lemma 1 a subsequence (we

J
call this subsequence in the same way) such that

o ] [}
C —————m— > C where C is a compact convex

set of diameter 80

s ° . S ° .
But  J Tk ncH =1ip HTkn fc 31 i) and

S o [=3 [+]
K 1 2 = L f 1 1 fi ] 2
M Sk n (c 1,000 2 M % on csj) u(8 ) if i is fixed and j
Jj{i). Thus

P £ °
sligo ws < J enc) < ues,)

This proves that u(8§) is continuous from the right.

We show now that if C is any compact convex set and

Hxnsc) =0

then p(8) must be continuous.

Q L]
Recall H(8 ) = JHCS(K n C8 ), C8 a compact convex set

] [»]
of diameter 80 .

o
If C8 is not a convex body then it is easy to see that
o

u(8) = 0 if & £ 8

(]

W« 4 »



and therefore p(8) is continuous from the left at & .

[
Assume CS is a convex body.

Q [+
Let 1C, [_ = € x : d(x, R'- Cy ) > € 3. Thus from the hypothesis
[+] [+]
we get
S ° = o S ) °
uis,) = M Cy ) = " noc, ) + X7k int(Cg )
= M T«nintc, )y = 1i0 Mk n 1€ ¢ i)
8 i==>w 8 1/2 :

o] ]

This implies the continuity of p(8) at 8o I

A mapping Y : RD—>Rnis called a contraction if
”Y(x)—Y(y)“ < k,”x—y” for all x,y € Rn, where O0<k<l. Clearly a
contraction is a continuous function. A contraction that
transforms every subset of Rn to a geometrically similar set is
called a similitude. Thus a similitude is a composition of a
dilatation, a rotation and a translation.

Let Yi 1 = l;...,m be a set of similitudes with
contraction ratios ki . We know that there exists a unique

non—-void compact set K such that

i=1
(see [Fal] ). We assume also the following (s is the Hausdorff
dimension of K):
1) o <YK < w (s > 0)
=3
11 Y Ky ny K = Q Lf 1f]
)j{(l_() 5 ) if if]

Such a K will be called a self-similar set.

Notice that if K is a self-similar set then the

following equality holds:
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By E(A) we denote the convex hull of a set A.
Let K be a self-similar set. It is clear that
Yi(E(K)) c E(K) for all 1. We rename the sets

Yi O «=» O Yi (b(K)) in the following way: E(K) is called T,

1 q
Y,(E(K)) is called T., Y. o VY. (E(K)) = Y_(Y_(%(K))) =T.., etc.
1 1 1 3 1 J 13

Fix r 2 1., Take all T, . possible. This family has m
1. +.e01
1 r
elements and we call it Gr . Notice Y_D,,OY_DYi(K) c T. L.
i - eaal 1
1 r r+i 1 r r+1
c T, -
- 1 caal
1 r

Property Z: Let K be self-similar. We say that K has property

Z if there exists an index il coa ir such that
[+]

T. . c int E(K)
A | -
1 r

Q

Corollary 1: Let K be a self-similar set and let K have property Z

Then for any compact convex set C we have

HEknac) =0

and p(&) 1s continuous.

Proof: If the hypotheses of the corollary hold for

K then b(K) is a convex body and the
following property is true: there exist €_ > O and a natural
number rl (2r  , r, of property Z) such that for all convex

compact sets C and all t =2 € the set

d(p,dC) = t }

[bC]t= {p

does not intersect all elements of Gr .
1

The proof of this fact is as follows. Let rlbe such that

r zZ r and
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r

. 1
(1) Max diameter of elements of Gr = (max ki) . |K| <
1
< dOEB(K),T, /2
i ...1
- 1 o
Let €, = (max ki) % ]Kl/2 . Take all elements T of Br such that
1
I n2B(K) # {#3. Call this set G; (notice G;#{¢})and observe that
1 1
(2) L = k)
TeG”
-
1

Let C be a compact convex set and assume that [bC]e intersects all
[+]

elements of Gr « For each set I € G} take a point g, € T 1N [bC]e

1 1 ) °

Thus  ®(Y q.) g [C], and E(y a, ) £ B(K). But by (1) and (2)

4]

®(K) c [b(? qj 3] . Thus we have that if p € %(K), p f E(y qj )
o

2¢€
then

(3) d(p,aB(K)) & 2e %)

¥) Let Cl,C2 be two compact convex sets such that C2 c [Clje for
some € > 0. If p € C,, p ¢ C, then d(p,dC,) < &
Proof: Let g € C1 be such that

(4) dips;g) = d(pscl)

Obvicusly d{(p.;qgq) £ €.Let v, = (p-q)/d(p;q)s: Vv

1 «ee s v be an

2° n

orthonormal vector family. Notice that the ray L { vlt + g s t €

[O;@)} intersects bcz . Therefore to prove %) 1t is only

necessary to prove that 5C2 n { Vlt + g t e (e ; o) } = (&}

Suppose this is not true ie. vlt° + q GbC2 with t > €
From the hypothesis there exists g’ € Cl such that d(v1t°+ qsq’ )LE

But the function g(t) := d(tqu + (1-t)qgq,p) = d(t(vlt +_E tiv_ )

1 i=2 i

+ gq,p) is continuously differentiable in a nmeighbourhood of zero.
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Also observe that tl > 0 s0 g'(0) < 0. Thus there exists t°y 0 <

t° < 1 such that

g(t’) dit'q" + (1-t")g,p) < d(p,q)

and this contradicts (4).

Therefore T, ¢ int B(U q.) and by (1) and (3)
TEEEEE J 3
o
d(T, . 2% g ) > 2e
1, 0a.1 J 3
1 ro
Using X) again one obtains d(Ti i 0E8) > €, and therefore
17 ro
[»C 1_ cannot intersect T . .
€ i ..1
° 1 r

[+]

The proof is completed if we notice that there are

elements of Gr contained in T .

1 +.001
1 1 r

[o]
We return to the proof of the corollary.
Let C be a convex compact set and t > 0. We define

W(t,C) 1= M (K n [2C1, )

Suppaose t < €, then

(5) W(t,C) < s j{fs(vi (oY (0).en) 0 o3CT )
1 r
1
all index i ...i1
1 r
such that 1
T N faCl, # (e}
1 rl
But
s
(6) X (vil(...(vir(K))...) n el ) =
1
1, .a.1
= kT . ... kT Kk nrac "13 )
i 1 t/k. ... k.
1 r 1 1
1 1 rl
1,ea0l
where C rl is a convex compact set. More precisely
1,...1
ct o=y T el
i i
rl 1



Using (5), (6) and the Proposition just proved we have

m
(recall 1 = (.g.k7)"= = k% ... 45
* all ' 3,
n—tuples n
s S . S
T W(t,C) ¢ ( % kS ... ) K ' <
(t,C) s X ke ) - M Tk nrac e/ (min k 3"y
all index 1 rl 1
i oo sl such that
1 r
1
.
i1 ,..ir n [aCJt+ {22
1
£ (1 - (min ki)rls) . W(t/(min ki)rl,C')

where C'is some convex set, ie. we have proved that there exist
€, > 0, rl a natural number and a fixed a; 0<a<l, such that for

any C compact convex set and any t < € there exists C' a compact

convex set such that

(7) W(t,C) £ a.W(t/(min ki)rls ,C')

Thus using (7) and the fact that W(t,C) S,}CS(K) for any C and
t>0 we get

lim W(t,C) =0
t-->0

Now we define functions u,U and U which ‘approximate’ in
some sense the function p. For defining these functions we need
other auxiliary functions.

Recall that Br is the set of all Ti N possible
with r (21) fixed.

Let P(Gr) be all the subsets of the set Gr ( {8} is not

included) . Define Jr : P(Gr )J=—=>R in the following way:

if { T s ecea g } } is an element of P(Q ) then

Jo({T . . s was g T .2
L 1
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It is not difficult to check that Jr (P(Gr)) is a finite
set of points of R such that if a € Jr (P(Gr)) then 0O<asl, and
1 € J (P(GB )). Also J (P(G )) ¢ J (P(G y) for all r 2 1. Be-
r r r r - r+l r+1
sides, for all € > O there exists roz 1 such that for all r 2 Fos

if x € [0,1] then there exists a € Jr(P(Gr)) such that |x-a| < €&,

We will define functions Hr s h on the set Jr (P(Gr))’

r

ie. H , h = Jd (P(G )) -——> R.
r r

Let o € Jr(P(Gr))’ we define

6% := 37! ()
r r
and
H (a) = min ( max { ru F'l ) =
r a
B G I',v" € 8
r
= min o { diameter of B8 ) 3
B € 6
-
hr(a) := min ( max d( I , T'') )

B es® T,I' €8
r
where d(»,») is the distance between sets. Remember that I';I'" are

elements of the form T. i .
i see
1 r

From the definitions of Hr and hr it is clear that

hr (a) = Hr(a) b ]Kl and Hr(l) = IKI. It is not difficult to see

that Hr(a) - hr(a) < € for all a € Jr(P(Gr)) if r is big enough.
Also H (a) £ H (a).
r+1 r
Let O < € < €_. We define functions U , U and u_ which
1 2 r r r

‘approximate’ p(8) on [el,ezj,

Let

Ur(S) = max { & ¢ h (a)

IA

>
(W]
w

N
le/]
[}

u (8) 2= max { a : Hr(a)

« 10 »



Thus UF(S) is defined for § 2 min hr(a) and u (8) is defined for
-

agJ (P(G ))
r r

8§ 2 min Hr(a). It is easy to see that there exists o

aeJ (P(G ))
r r

and a € J (P(G J)} such that H (a) < €
r r r

[+] o (o]

.« Thus U and
i r

ur are defined on [el s @) 1f r 2 Fe -

Let h (a) := H (a) - ((max k.)r.|K,.2) and
o r 1

UF(S) = max { a : hr(a) £ 8 }. Thus Ur(S) is defined for § 2
min H (a) - ((max k_)r.,Kl.Z ).
r i

aed (P(G ))
I r N

Morover ur( 8§ + ((max ki)r,lKl.Z)) = Ur(S) and therefore Ur is

defined on [El,m) if r 2 r 0 ®
All functions ur(S), Ur(S) and Ur(S) are jump

functions with a finite number of jumps, continuous from the right

non-decreasing and positive.

The following theorem shows that the above functions are

approximations of p(s).

Theorem 2 : Let K be a self-similar set. Let ur(S),Ur(S), UF(S) as

above then

“~

a) u _(8)/87s u(8)/ (8% H%(k)) < U_(8)/5%s U_(8)/8%
1if & 2 min Hr(a) .
acd (P(G ))
r r
B) if u (8) is continuous on (O,®) then
IU (8) - u (8)! ————— > O uniformly on [« s€_]1 as r ~——=>w,
r r 17 2

c) lim ( sup ur_(S)/SS ) = 1lim ( sup Ur_(8)/8S ) =

r——>m 86[61562] r——>w 86[61562]

= (sup p(8)/8 )/ M (K)  if u(s) is continuous at e,
Sef e €
L 1 2]

d) If we replace Ur by Ur’ b). and c) hold.
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Proof : We show first that

u_(8) £ w8 /)T (K) < U (8) if 82min H_(a)

aeJ (P(G )
r r

o

o
From theorem 1 we know that H(s) =3£S(C6ﬂ K) where C8
o
is a compact convex set of diameter &§. But C8 interesects 1

elements of G . Let T ] 5 esea g1 . ) be such
s 11"'lr Jl.,eJ

elements
Then

[
H(8) = }{S(CSn K) S Lk a0+ L (K week ) 71,5 (k)
\ 1 r 1 r /
\/

=

(this last inequality due to the fact that K = U Y.ouqui(K) )

all M1 r
r—index
° s
Also h (a) < |C | = &. Then p(s) < u_(8). )07k

The other inequality is proved as follows: let ur(8)=a,

ie. Hr(a) £ 8. Thus there exists 1 elements of Grg say T. so ey

lla-alr
T. . s such that
. J o8 o)
1 -
1) JF({Ti i 5 eanyl ; }) =
1a==r_ Jlucu
S(hy cen ko ) TH i+ (k. aak )7 = g
1 - 1 I
11) H (a) = | T. . U ... U T, . '
i~ 1l 5=l 3 oo s )
1 v 1 s

UsingjcS(Yi(K)ﬂYj(K))=O if ifj it follows that ur(G)Sp(S)/}CS(K)u

Now we prove that U (§) < U (8) if & 2 min H (a).
r r r

aged (P(G ))
r r

For this we only have to prove that hr(a) L hr(a) if aeJr(P(Gr))

Ed

Fix a. From the definition of hr(a) we then have | elements of Gr

say T . . s s=a g T . . s such that
1,0ea 1 J,eeel]
1 r 1 r

1) J ({T. ,.,.,Tj . 1) = a

« 12 »



ii) hr(a) = max ( d(T,T") )

F,F'E{Ti i 5o wng | . 7
l.,. - Jluuu_Jr_

where d(#,#») is the distance between sets.

But any element of (T R } has

1, eeal i R |
1 r 1 Jr

diameter less than or equal to (max kig ,IKI, Thus

IT_ .o U.adU T
ool J

.| £ h_(a) + (max k_)r.;K’.z
e o a) l'— 1
- 1 r

and therefore H (a) < h (a) + (max k_)r.lKl.Z ie. h (a) £ h (a)
r r i r r
and we are done. This proves a).

To prove c) we need the following: suppose H(8) is continuocus

at 62, then lim ur(e2 ) = p(Ez)/}{S(K). Suppose this is not
r—>w

true; then we would have € > 0 and a subsequence rj such that

=3
] € € - €
for all j u“j( 5) < ul 2)/]{' (K))
But then
r. N ",
J S —
(&, ~((max ko) Tafkpe20 /KT (0 s U (e -((max ko) TL|Kp.2)) =

J
s
= € < € / K —€
U (850 < ule ) /7 (K)
J
which is an absurd taking j-———->w,

-
1
Let € > 0. Let rl be such that u(€2+ ((max ki) uIKI,?_))—

s S i
- ue) < e g0 TICIMA (Ky~u (&) < e if r 2 r, and

-
Il/xs—l/y5'<e if ’x—yls { (max ki)lglK,.Z) and X,y e[el, ®) . Let

T = sup p(s)/ %K) .
55(0552]

Let's prove c): due to the fact that Ur is
non-decreasing and continuous from the right we have that

sSup Ur_(S)/SS is taken on a particular point &,  of [El s 62 1.

§c[e e
L I 2]

Thus if we assume r 2 r, we have

« 13 »



Ny

S r s
UF(SO)/BO = ur(Bo + ((max ki) .lKI.Z))/So

H

~ s
sup U (8)/8
-
Sef[e ¢
L Ik 2]

and we therefore have two choices: (8° + ((max ki)r.lKi.Z))=8;

belongs to [61562] or not.

Suppose that it belongs. Then

=

IA

S S S
U (80078 = U (8,) . (1/6,-1/8,7) + u _(8.)/8;

=
T.€ + sup u (8§)/8
r

E[e ,€
e[ 1 2]

If 8, does not belong to [El ,62 1 then

, s _ , S ’ s S
UF(8°)/8° = ((ur(So)-ur(Ez))/So) + ur(€2)=(1/80—1/(€2) ) o+

= = : s
+ € € £ 2.e/(€ + L€ +
ur( 2)/( 2) 2 ( 1) T sSup ur(S)/G

§e[e ,¢
C 1° 2]

Thus c) is proved.

We end the proof of theorem 2 proving that b) holds.

From previous discussions of the definitions of u and U
r r

we can assume that these functions are defined on [61—6962+E] c

-—

(Oy®) if r 2 R for same R, where € > 0 and ((max k_)r.{Kl.2)<G if
i

rz2R.

Suppose that Ur(S)—u (8) does nmot tend to zero uniformly
r

on [El’e”]' Then we would have a sequence of points Sj € [61562]
£
such that (r . 2R)
J
O<©oe U () —-—u (8§ ) =u (& + a} ) —u (8 )
J J rooJ 3 r J
3 J 3 J
r.
where qj = (max ki) J,|K|.2 . Then
= s
(6 +q )/ (K} — p(8 ~q /3 (K)=p(8 +q . )/ (K) + u (8 +qgq.) +
(8 *q )/} (8. -q, o M8 +q, H £ (8 q;) ¢
+ U (86.-g.) -~ p(s6.-g)/M°(K) 26 for all j
- rj J 3 J 3

and this contradicts the uniform continuity of u(8) on
[el—e,e2+e],.
s
Set f(8) := p(8)/86 .

« 14 »



Theorem 3 : Let K be a self-similar set. Then
f(8) £ 1 for all & € (0,m)
Proof: Suppose the theorem is not true. Then there exists C_ a

&

compact convex set of diameter 8§ such that
s s = =3
> >
Howncoskne w2 KN CH/C 28> 1
From property 1II) (see page 5 ) of a self-similar set
we obtain
(Y (KnCcHAY(KNC)) =0 if i ¢ j
i & 3 &

Alsojcs(vi(K ncy) = k?.J{S(K ncy.

Thus for all i we have
Koo kneonqy wnc)|®=HSknco/sknc 2851
1 & i 8 & 8
and therefore by induction, for any‘1=1,2,,., the following holds:
M (Yo ... o Y(KAC)I)NY. o ... 0Y. (KNCGC)) =0
)y ) ;

= 1 = 1
if the l1-tuples i ... j and i’ ees 3 are different.

S s
>
by M (V.o ... 0 V(KN CO/|Yo ..o Y, ekneoT 2 e >t

for all l-tuples.

Set A := U Y O 0. 0 Y, (K N CS)
all the v
l-tuples with 1zn = 1
Then A c A .
n+l - n
Set B := ] Y o ... oY (Kn0C.)
{ 7 8
all the 7
n—tuples = n

Clearly Bn c An. Also from a) and b) we have

H7B ) = 2HZ(Y o ... o Y (KN C)) 2 B.E |Yo ...o0VY (KNC| =
n i J ] J &

all the all the’
n—tuples n—tuples
s s S s
= B. T K.us 200 oKk K necC = pB.{K N C
e B G ; SR NIEN

all he
n-tuples
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m
(the last inequality because §§1k? "= g k?, cee . ko= 1)
all the J
n-tuples
S S S S «©
But Ay < LT i = A =4 2
SAN ANCISREY A9 hus  lig #7(A ) = J{ ¢ noA )

2 B.|K N C| s 0 .

Clearly Y o ... oY (K N CS) for all the 1-tuples
7
= 1

12n, form a Vitali family Vn for A, ie.they are compact sets and
for any € > 0 and any x € A there exists Yio cee O Yj(K N Ca) of
(+) diameter less than & such that % € Yio ces O Yj(K n CS),

Let n, and €30 be such that}f~(A )+e < .} 5(A). Then

V]

there exists a disjoint subfamily VA of Vn such that(fFallpg.11)

© Q

) M ") < ( = ¥; © «+r @ Y (KD cs>|5)+e/3 = Wee/B

Y. O .o OY (KN C) € Yy’
1 3 ) n

4]

and ( or W=e or ( W<w and J{.S(A - U YiD e waD Yj (K N CS) ) = 0 1))

YO «..0Y (KN C. ) e v
1 3 8 n

[+]

But if W= by (8) and b) it follows

B.Xm) ¢ 3 B.|Y,

Y. 0 ... oY (KAC.) € y-
J & n

© ... 0Y. (KN C )|S+ e <
3 )

1 °

1

Y. O ... oY, (KN C_) € y*
1 J 5 n

¢ s HZ( Y. o ... 0 Y. knco) e s K50 + e

4]

and then €% (K)

i
8

If W< @ then by (8) and b) we get

B. X)) < s }{S(Yi © ... 0 Y. (KNC) + e S}CS(AH)+€ < BJ (™
[e]

Y. O ... 0Y,  (KNC_) € Vv~
i J § n

’ i
Property A = Let K be a self-similar set. We say that property A
holds for K if there exists Z} > 0 such that for any x € K and any
Bx - (ball centered at x and radius F) with r £ A we have y € K

n
and Y, a similitude with contraction ratioc k = 1, Y: R ——> Rn,
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such that

a) Y (B N K)=R38 n K
Yt Xyt

b) (B n Ky - Yi (K) = {6} for some io 1ii°$m.

s 17 °
Lemma 2 : Let K be a self-similar set having property A. Then for
any 8§, 0 < § £ Zl there exists j , Jj=1,..,m , such that
f(8) = f(&/k )
J
Proof: Suppose 0 < & 2 l}. By theorem 1 we know that p(8) =

= J{‘S(K n CS) ;s where C8 is a convex compact set of diameter §.

By property A there exists Cé a convex compact set of diameter &

such that JC S(x n c;) XM=« n Cg) and (KN CH- Y. (K) = (@)

lo
with 1<i <m.

CS/k is a compact convex set of diameter

1
°

§/k . It is easy to check that{ (k0 C_ ) = t/k] . JH Tk ncp

-1
Then Y. (C.)
i &

]

1,

i o
[+]
Clearly p(s6/k_ ) 2 M nc. .
i, §/k "
10
Also by theorem 1
(s/k ) =M Sk nc )
H i 5/k
° i
2}
where Cé/k is a convex compact set of diameter S/ki
i, °
But
nis/k ) =M Sxknec. )y <1k H v co )y o<
i, &§/k " 1, i &§/k
10 lO
S S r =)
< 1/k° . K nc: = K n
y H =« o) K = Co )
10
=1 = S S
Th §/k = Knc = 1/k .. KNnco) = /k
en i ij J ¢ S/k; ioj{ ( C,) = u(s) ;. E

0

Theorem 4 = Let K be a self-similar set. Then

i) lim (&) =1
§—->0

ii) Let also K have property A. Let 0 < €1< 62 be such

that
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a) 615 D with A\ of property A.

b) El.(max 1/ki) £ e2

Then f(8) = 1 for some 8 € [e, s €]

Proof : We prove first that 1im f(8) = 1. Suppose this is not
§-->0

true, then there exists al> O, a2> 0O such that f(8§) £ 1-—a1 if

86(0,32), From the definition of Hausdorff measure of K we have

that for any € > 0O there exists a numerable family Ei of compact

convex sets of diameter less thamn € such thatj{S(K i Ei) # O for

. =1
all i, M E) 2 J Tk) and

s S
(9) JETK) + e 2 E E |

But let € < az, then

oo

= S - S S
i_: E |7 = f Fownen o e T/ HKknED 2

> 2 M5k n E/FCE ] ) 2 =Xk n E.)/(1-a,) z.}cs(K)/(l—al)
i 1
which 1s a contradiction with (2).

We prove now 1ii). Suppose K has property A. For proving

1i) it is only necessary to show that sup f(8) =1 because u(8)
sefe e
L L 2]

is continuous from the right and non-decreasing. Also to prove

that sup f(8)=1 it is enough by i to prove that if 0 < & < El then
Se€fe €
€ 1’ 2]

there exists §° =« [615 62] such that f(8") =f(8§). But this follows

easily from lemma EEﬁ

A combination of theorems 2,3 and 4 gives us a method by
which we can calculate in a practical way the measure of a self
similar set K if property A holds and T = E(K) is known.

The method is as follows: we observe first that the
function Jr; P(Gr)———> R , defined on page 10 is a
function whose values we can calculate. Thus Hr and hr are
functions which we can also calculate because this involves taking
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the distance ( or the diameter) between sets of the form

Yo vi(E(K)) cee ) =T, : (recall T = £(K) is known').
1 r 17" "7

~

Thus, the functions Ur’ Ur and u are known,
.

But these functions are of the form

1
Zqg. - S(x—fi)

wher97 L€ (Oym),; g >0 f_ and g. are known ! ) and
i i i i
/ 1 if x 2 0O
g =
(%) { 0 if x < O
et el s 62 be as in theorem 4. Then

sup ur(s)/sS max ur(a)/sS

se[e ,€_] . .
17 2 SE{El,all points & 6[61,62] such that Ur has

a Jump at &' 3}

and a similar expression holds for U and u .
r r

Thus B = sup U (§)/8° , B = sup U (8)/8 —and
. e 4 ¥

§e[e e S§e[e €
[ it 2] L 1’ 2]
B = sup u (6)/8S are all numbers which we can calculate. Then by
.

r

efe ,e
Sef 1 2]

theorem 2;3;4 we have

5 (a2 ¥
< 1/ K £ B £ B
B H oo _ i
and B £ B (this because H 2 H }. From theorem 2 we know that
r r+1 r r+1
B - B8 -—=> 0 if r—> o ie.
r r

~ =3
1/B £ 1/B £ T(K) £ 1/
r r ‘}c () Br
and 1/8 -1/B --> 0 if r——>w,
r r
In the next section we compute exact and
approximate measures of some self-similar sets.

Observation 1: Let K be a self-similar set. Suppose that

property Z does not hold, then it easy to see that
(int B(K)) N K = {g) ie. K¢ E(K).

2
2. Example 1. The sets Kn will be self-similar sets in R for each
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n * 3 and they are defined as follows. Let Pn be a regular poligon

of n sides and IP = 1. Thus, for example, P3 is an equilateral

l
n
triangle whose base has lenght 1, P4 is a cube of side equal to
1/42, P5 is a pentagon, etc.

We define Yz i=l,...,n a similitude in the following
way: for each vertex V: s 121i<n of the reqular poligon Pn,

n .
Yi is a contraction of ratio 1/n and a tramslation (ie. there is

no rotation) and YZ(V?) = v: . K is defined to be the unique
1 a

n
compact set such that U YZ(KH) = Kn,
i=1
From the definitions of Yz one easily gets an “open

set condition’:

n

U Y (int B(P )) ¢ int B(P )

i=1 i n - n

and YZ(intE(Pn)) are disjoint (see beginimng of proof of lemma 4).

Thus; by Hutchinson’'s theorem (see [Fallpg. 119) we get that
Sn
ay 0 < K (K ) <o
Sn n n
By (v (k) nvY (K =0 if i fF j
i n i n
where Sn is the Hausdorff dimension of Kn' Thus Sn = 1 for all n.

Observing that V: must belong to l<n it

is not difficult to show that E(Kn) = B(Pn). Recall that
Bk oy =17, Yk )y = 17, etc.
N i n i
Notice that property Z holds for Knu

For the sets K we can compute their measure in
n

an exact way:
1
Theorem 5 : M “(k ) =1 for all n 2 3.
n
The proof of this theorem will come later. We will need
some lemmas first. To motivate the reading of these auxiliary

lemmas the reader may go directly to the proof of theorem 5 on
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page 30 . Figures 7 and B show how K3 and K5 look like.
We write p(8;n) for the function p(8) of Kn .

Lemma 3 : Let n,J be natural numbers. Then

————————————————————— < 1 ifn25
3) T IZI7nYTein(n/ny-1/n iren
2/n
by ~———— =20~ <1 ifn25
Y TTITITRY Tsin(msn) trn
(j+1)/n .
————————————————————— <1 ifn 2 7 and
c) oin Gnse) IT27m if n an [(n is even

2%83<n/2) or (n is odd
and 253i<(n-1)/2)1]

d) (1—-1/n).sin(n/n) < sin (2u/n) — 2/n ifn 2 6

2
e) (1 - 1/n).sin (w/n) £ 2/n ifn 2 6

) V 2/(1 + cos(n/n)) (1 — 1/n).sin (n/n).sin(n/2n) £
£ 2/n ifn 27
Proof: From Taylor's series of sin x we obtain
(1) sin X — ® 2 - x3/3! if x € [O,n/2].

In the following x denotes real values and n (or j) denote natural

values.

a) Let f(x) := (n — 2) - n/x - n?(x—l)/(xs.Sg).Then f(x) 2 0 if
x € [5,m) because f(x) is non-decreasing if x € [5,®) and
f(5) > O. But using (1) we get for n 2 5 that
i £ 1+ f(n) £ n.[(1-1/n).sin(n/n) — 1/n]
and a) follows.
b) Follows from a) immediately.
c) Let g(n,j) = (n/j)z. {((n — 1 ) — 3/3). Then
g(n,j) 2 nS/SE if n 2 8 and [(n is even and 4%£j5n/2) or ( n 1is odd
and 423£(n—-1)/2)] because

3
g(n,j) 2 4.(mn - 7/74) 2 n /3! for the above values of n
and J
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2
If j =2 and n 2 7 we get g(n,2) 2 (7/2) .(m = 5/2) 2
3 > <
> no/3'. If j = 3 and n 2 7 we get g(n;3) 2 (7/3) . (n — 2)2 wn /3.

Thus

3
{2) g{ng,j) 2 m /3! ifn 27 and [(n is even
2£3<n/2) or (n is odd
and 2%3i%(n-1)/2)1]

Thus using (1) and (2) we get
. 3 . 3 . . .

0 £ (g(n,3)y — m /731).(3/n) < sin(jn/n) — j/n - 3/n

and c) follows.
2 3

d) Let hOO = (. (3 - 1) = 2)ox” -~ .(f3 - /3t .
Then h(&) > 0 and therefore h(x) > 0 if x > 6. But using (1) we
get if n 2 &6 that

3 .
0 < h{n)/n" £ ({3 - 1).sin(n/n) - 2/n £
€ (2.cos(n/n) — 1 + 1/n).sin(n/n) - 2/n

and d) follows.

2
e) and f) Let f(x):=sin (mx) —{ (1+cos(n/7))/2‘ 2% . It
is not difficult to prove that f(x) £ O 1f x € (O, @ ). Using this

inequality e) and f) follow.

Lemma & =z Let n be a natural number. Then

1
a) p((1 — 1/n).sin(n/n), n) $}C (Kn)/n ifn 2 6 and n 1is
even

1
b) p( sin(jin/n) - 2/n,; n) Sjc (Kn),J/n ifn 26, n is

even and 2 £ J £ n/2

c) J 2/(1

+

cos(n/n)V.(1=1/n).sin(n/n), n) sjcl(K y/n
M

if n 2 5 and n 1s odd.

d) ue f 2/(1

ifn 25, n is odd and 2 £ j £ (n-1)/2

+

1
cos(n/n) .sin(jn/n) = 2/n,; n) 5}{: (K_).5/n

Proof: Let n 2 5 . Recall that E(Kn) = E(Pn) = Tn9 YZ(E(KH)) = Tz

no.n n n )
Y.(Y.(E(K ))) = T.., etc. We call C_ the center of P ie.
J 1 n Ji e n
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Cg =z v: /n - Thus it is easy to check that ( recall |P_| = 1)
n
n 1/2 if n is even
d(v ,C =
Vi€ 1/7§2.(1+cos(n/n)) " if n is odd
n n n
As T_ contains V_ , IT_l = 1/n and
i i i
/ . . ) . .
d(Vn n _ sin(Jn/n) if n is even, 1%j%(n/2)
17 Tie1 07 -
. Jn V2/(l+cos(n/n))" csin(in/n) i n is odd,
= Vv = 2iZ(n—-1)/
d(vl, n—j+1) 1£38(n-1)/2
we get
(3) /
aoT n )= sin(jn/n)—(2/n) if n is
17 j+1 even,1%jsn/2
n o_n 1 . . . .
=d(T n _+1) 2 d2/(1+cos(n/n)) -sin(jn/n)-(2/n) if n is odd,
] 1£55(n-1)/2
Set center T) = Y (c”). Then
i i e
(4)
n n n n
d(center T ,center T_ ) = d(center T s center T ) =
1 2 1 n
/ . . .
_ (1-1/n).sin(n/n) if n is even
¥ 2/ (i+cos(n/n) + (1-1/n).sin(n/n) if n is odd

The above formulae could be sharpened to get the
following ( (3”) )which will be used directly in the proof of

theorem 5:
(37)
(1- 1/n).sin{(n/n) -1/n if n is even n26

JZ/(1+cos(n/n))H[(l*l/n),sin(n/n) -1/n]
if n is odd n25

ind(T n) z

Also using d) of lemma 3 we get, for n even, n 2 &,
(3) (1-1/n).sin(n/n) < sin(2rn/n) - (2/n) <

< sin(3n/n) —(2/n)< ... < sin(n/2) —(2/n)

and for n odd, n 2 5

{(6) J 2/(1+cos(n/n)f‘,(1—1/n).sin(n/n) <

<y 2/(l+cas(n/n))V.sin(2n/n) - (2/n) <

<‘/2/(1+cos(n/n))‘,sin(3n/n) = (2/n) < ... <

< VZ/(1+cos(n/n))\asin((n—l)n/Zn) - (2/n)
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{ the reader can check the first inequality of (&) for n = 5 )

a) Let C be a compact convex set of diameter
(l-1/n).sin(n/n). Suppose Tz NncC+ {#). From (3) and (3) we
have that C N T? = {@p} if 3 f 1,2,n. Thus from simmetry C can only

1 n
intersect two elements of {Tl, T

57 Tz}, We assume C intersects

1 1
T: and T;, Observe that J{ (Tz nK) =} (K)/n By corollary
2
1 we get that if L 1s any line in R then
1
(7) JE(LnKy =0

Let L19 L2 be two parallel lines at a distance (1-1/n).sin(un/n),

n _n
perpendicular to the segment joining the centers of Tl’TE;

such that CcWw where W is (see figure 1)
the 'strip’ obtained with L1 and L25 ie. W= l_l u L2 U all points
'between; Ll and L2 . Recall that d(center Tz scenter T; ) =
=(1-1/n).sin(n/n) and observe that Kn n T: and Kn n T; are trans-
lations one fraom the other. Then from simmetry and (7)follows that
thl((Kn n (TZ U T; ))—W) z.}(l(Kn)/n . Thus a) follows. This
last argument will be used quite often. Case c) is proved in an
analogous way using (3); (4) and (6).

(b) Let n and j be as 1in b). Let C be a compact convex

set of diameter sin(jn/n) —(2/n). Assume C N T: + (23}. Then from

(3) and (7)) we get
o=HH'«x n1" ncH=XH" '« ™ ncy = =
n j+1 n j+2 Tt
1
= KLk nT _ ncH
n n—j+1

Thus we could assume that C intersects

n n
in a non—trivial wa onl T «
4 4 n-j+2 ° n-j+3 °
n n n n n
sy Tn s Tl 5 T2 5 sea 3 Tj—l s Tj . By simmetry and using this

last argument repeatedly we verify that C interesects in a
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non—trivial way at most j elements of {Ti} and b) follows.

Case d) 1s proved in a similar way using (3)

and (7).

Lemma 3 = Let n and 1 be integers. Then

a) p(i-(1/n"),n) < (1—(3/nl)).)£l(K ) ifn26,i21
n

) i—1

b) p(1-(3/n"),n) (1-(1/n ))ﬁ%l(K y ifn 26, i 22
n

in

IA

€) w(1-(1/5"),5) (1—(2/51)).3(l(k5) if i 21

d) p(i-(2/5%),5) £ (1-(1/5° 1)), }Cl(KS) ifi22
1 .
e) u(1-(3/m,m <} (k_)/2 if n 26

f) W(1-(2/5),5) 5\}C1(K5),2/5

1 1 i
Proof: Let n25. It is clear thatJC (k n T oy =M y/nt
n J. el n
N 1 n il % * n
d |7 = 1/ . Al vV, e T v e T
an ioei | n S0 Yy 1e.1 " Vas2+l ns2+l,..,n/2+1
1 1 \ /
; \ /
h .
3] mn n B} n *
d(v, ,Vv ) =1 if i vV e T v €
NV Vnrzer) tTonois even or vy ool ) T(n=1)/2+41
i

I n . n . .
ag(Vv ) =1 1if n is pdd.

T s sV
\(n—l)/2+19,,,(n—1)/2+1 y 17 (n—-1)/2+1

i .
Let C be a compact convex set of diameter 1—(1/nl)

Assume C N T; 1 # (9. Let L1 ’ L2 be two linmes perpendicular to
N\
i
the line that joints Vn and Vn if n i1s even ( replace n/2 + 1
1 n/2+1

by (n—-1)/72 + 1 if n is odd in this and all the following
expressions ) and such that d(L1,L2) = 1 - (l/nl) s

Cecw where W is the strip enclosed by L1 and L2.

Then as K 1 T

and K 0 T
\ N

- + e . +
1..1, Q/2+L,..,n/241

i i
are translations one of the other we have using (7) that

1 n n 1 1
n T < <
& KN, (:1,,18\n/2+1,=.,n/2+1i n ey < JHa/n

i 1
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n 3

But a similar expression holds for pairs T T
P P ( ’\n/2+j,..,n/2+j1

\JalJ/
i i
n
}=25..,n/2 if n is even{or for pairs (T
ITLa ey ¢ P T i T (nm1y /245 . (n=1) 72+5
\ / \ /
i i

J=25.0.5(n=1)/2 if n is odd with n/2 + 1 replaced by (n-13/2 + 1
in (B) ). If we assume n26 then there are at least 3 such pairs
and a) is proved. If n=5 there are 2 such pairs and c) is proved.
n _n
e) Let n26.0bserve that d(7  ,T ) 2 1-(2/n) >
3 n/2+)
1-(3/n) 1f n is even, 1 £ j £ n/2 (replace n/2 by (n-1)/2 if n is
odd). Thus if C is a convex compact set of diameter 1-(3/n) and
CNnT #{s) then C N T  _ = (s} (replace n/2 by (n-1)/2 if n
J n/2+j
is odd) and e) follows easily.
f) It i1s easy to check that if C is a convex compact
set of diameter 1-(2/3) and C N T5 f {23 thenjcl(Cﬂ(TSUTs)ﬂK )=0
1 374 5 )

Using simmetry f) follows.

b and d) Let i22 , n23 and let G: be (see fig.Z2) the point

n n
] . . L. L f .
intersection of the line L joining Vl and Vn/2+11 n 1is even ( or
V?n—l)/2+1if N is odd ) and the line L  perpendicular to L
. ] n, .n n, . N, N
such that L' contains the point Yl(Yl,.. Yl(Yn(Vl)),..) €
\ /
T21 in 7 ’
N\ /
* It 1s easy to check that
/ i—1 2

a 1/nl c{(1=-1/n).sin (n/n) if n is even

d(Vv, .8 )= -

i—1
v 2/(1+c05(n/n))‘.1/nl L{1-1/n).sin(n/n) .sin(n/2n)
if n is odd

i
Let be n 2 6 and C be a compact convex set of diameter 1-(3/n ).

n
Assume C N In/2+l..n/2+l/* {6} if n is even (replace n/2 +1 by

i
(n=1)/2 +1 if n is odd in this and the following formulas). Then
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from the fact that

n N
d(T

( 1..1 ’Tn/2+1..n
\ / N\

i i
—_ — / -
/2+1/) 1-(2/n ) > 1-(3/n )

i
Al

we get C {2).

av',a)) < 2/nt.
1 i

Then as Tn
{l,,ln/

i

one of the other we can use an argument similar to the one used in

a) and get

K nerto
N \ ) n/

and

T
\n/2+1,.n/2+1/

so by @ (or f) if n is add)

N

.
/241 ..n/2+1

N n /

1

i I cy <

X l(Kn)/n

i
which combined with the fac

i
t that c n T

{#} gives

o

/
(7) )
1 N n n * 1
K (T u-T T nCc)y £ K /
ook oy 1..1n n/zet..nszer 0 E) S JCT n)7n
\ \ \ /
i i i
Note that if C does not intersect T nor T
er
St 1.1 0" Ths2et L. ons2+t
\ / \
{?) holds. But b) follows i i
from (2} and the fact that the same argument may be
g} n n
with all the triples (T, . s T . L s T . .
o a - - /2% ..n/2+
\J J/ \J Jj(J 1)/ \n 2+3..n i,

i
2835n/2

of the form {Tﬁ

\J..

elements

i

Case d) (n=3)

5 5 i
av’,a”) < 2/5,
1 i

Lemma 6: Let i be an intege

i+1
a) pli-(2/3° 7),3

b) p(i-(1/3%),3)

c) pii-(s/3'y 3

3
Proof: Recall that Tj

1.-Ji

i

i i

I o R - T I

.y

r. Then

i 1
(1-¢1/3% ). H (k)

) < . if i
< (-3t 1(K3) if i
) € (1—(2/37 ). K 1(K3) if i

Iv

Iv

2

of lemma 3

are translations

i

then

done

(for n odd observe that C can only intersect (n-1)/2

is proved in an almost similar way using

1

is an equilateral triangle of base

«
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equal to 1/3l .

a) Let 1 2 1 and let C be a convex compact set of

. i+1 . 3 3 3
diameter 1-(2/3 Yo Then if C N (Tl,.lu T2.a2u TS..3)={¢}
\ / N\ / N\ /
i+1 i+1 i+1
we have
}Cl(KS neco < (-3 . } 1(|<3)
3
Therefore we assume C N1 T : + {2}.
N
i+1
Since d(Tf 1,T;°n2 ) = d(T> 1,T§ L) = 1-(2/3tt
NTTTN / t-e17%--3
i+1 i+1 i+1 i+1
(see fig. 3 ) we have
1 3 3
(K_ 0 (T urT )y nCy =0
}{ 3 %:.2/ \3..3 /
i+l i+1
It is not difficult to check that the segment [P. el 1 is
i+17 i+1

1

3 3 3 1+
perpendicular to [Vl, V2]. Thus d(Pi ’Vl) 2 1-—(2/3l ) and by an

+1

argument similar to that given in lemma 5 a) we have that

1 3 3 1 i+1
K T T nc) = K_)/3
Jc ( 3 & (\2.,23/ Y \11.,1/ ) ) ]C ¢ 3)

i+1 i+l
and a) follows.

b) Let 1 2 1 and C be a convex compact set of diameter

i 3 3 3
1-(1/3%). Then if C N ( T uT UT ) = {@) we have
1..1 2..2 3..3
\ /N / \ /
i i i
1 i-1 1
X (K, M C)y < (1= 1/3 ) - X (K)
3 .
Thus we assume C 0 T1 1 # {#}. From simmetry we have
DTy
only three subcases: .
3
bl) CANT ! £ {23
{" /
i+1 <
b2) C N 7° . = {e}; 3=1,2,3 ; CNT = {®3,
Jeed {,.12
\ / /
i+1 i+1
cn T3 F {22
' 1..13
\ /
i+1
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3 . 3
bS) cn TJ j = {¢}9J=15293; cn Tl 172 # {¢},
\" "y Ny
< i+1 i+1
cnT £ {23,
{.,13/
i+1

bl) It is easy to see that (see fig. 3 )

a(rs T3 ) and d(T> 3 ) 2 d(T Q.. )=
1..1 P 2..2 1..1 0 2..23 - i+1’7i+1
\ /N / \ /N /
i+1 i+l i+l i+l
= 1-(1/3")
Thus I Yaen (2 uTs ) N C) = 0 and by simmetr
3 2..2 2..23 Y 4
\ /AN /
i+1 i+l
}Cl(K nore uTs ) N C) = 0. Also as d(v>, R**1) =
3 3..3 3..32 ’ 1’
\ /N /
i+1 i+l
' 1 3 3 1 i+1
=1-(1/3") we have that 2 ( K_n(T uT n eys M (k_ys3t
I 1..1,.2..21 3
\ /\ /
i+1 i+1
i
b2) As d(Si+15Pi+1) = 1-(1/3 ) one gets
1 3 3 1 i+1
¢ <
(LI C Ko (T LUTo )0 ) £ HK /3
\ /N /
i+1 i+1
b3) From b2) one gets (10} again and by simmetry
1 3 3 1 i+l
H ok, n (T uT N C) <MK/
3 . ..
Jlee12,.3..32) 3
i+l i+1

c) Let 1 2 1 and let C be a compact convex set of

. i+1 3 .
diameter 1-(5/3 ). We assume C 0 Tl 1 $ {oy ( if
R
i
3 3 3 1
T T = <
Cna, (UT, 5UTy o ) = {2} then}f (K NC)
\ /N /\ /
1 i i

-1 1
< (1-w/3t L K (K ).

Then by simmetry, only two choices are possible:

3

ciy cnrT L # {¢) and therefore
t--4,
i+1
cno(Te uoTS ) = ().
\2--2, 33,
i i
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3 3
c2) C N T, . = {®1,3=1,2,3;C N T f{@tand therefore

\J.u / {..12/
i+l i+1
1 3 3 3 3
J 5 0 (I3.,3/ v Iz..z UTo 2z Y T{...l)/n €y = 0.
SRV S i
i i+1 i+1 i+1
Proof (of theorem 35) : Recall that property Z holds

for Kn n 2 3. Thus p(é&;n) 1s continuocus on (O,x). Let
. 1
£(8,n)=p(6,n)/8. Then, if 1<&, f(&,n) = X (K )/8 < f(1,n) =

1
}C (Kn)ﬁl (th.3). Therefore to prove the theorem we must show

1
}c (K )Y21. Observe that any number 0 < ZS < m%n d{(T. s T. ) maybe
N 1fF) i 3
used in property A as /\. Therefore from theorems 3 and 4 we get
i) f(8,n) £ 1 on [A
ii’) f(&_,n) = 1 for some & € [[}n,lj
From the continuity of p(é,n) one gets 1°) and 11" ) for
b = 30 d(T n) ie
. X n _n
1y f(&,n) £ 1 on [min d(T.,7T.) ,11
1F) i° 3
.. . n _n
i1) f(8 sn) = 1 for some &§ € [min d(T_ ,T.) 11
1% 1 J

We recall formulae (3°) of lemma 4

(3°)
/
mi d(Tn Tn) 5 (1- 1/n).sin(n/n) —-1/n if n is even n26
i?? it - I12/(1+c05(n/nf?,[(1—1/n),sin(n/n) -1/n]
if n is odd nz25
. 3 3 . .
and r{v#?d(Ti9 Tj) = 1/3 . Let n be even, n28. Define functions

g(8;n) and h(&;,n) as follows:

1 1/n 1f sl (1-1/n).sin(n/n)—(1/n);{(1-1/n).sin(n/n))
g{&,;n)= 2/n 1f Sel(l1-1/n).sin(n/n),sin(2n/n)—(2/n))

(J+1)/n  1f Selsin(in/n)—(2/n),sin((Jj+1)n/n)—(2/n))
{ and 2£32(n/2)-1

i . i i+1 ;
1-1/n if 8€[1-1/n ,1-3/n )] s 1=1,2;...

11 i+1 {+1 i+1
(14 1-3/nt if se[1-3/n" " ,1-1/n" ") , i=0,1,2,...

h(&§,n)=

172 if &e€e[1/2,1-3/n}

Then h(8&,n) 1is defimed on [1/2,1) and g(8,n) on
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[(1-1/n).sin(u/n)—(1/n),1-2/n). Also h(&,n)/8 5 1 and by lemma 3
a,b,c) we get g(&,n)/8 £ 1, By lemmas 3 a;b,e) 4 a,b) and from the
fact that p(é;n) is non decreasing we get
i
(12) 8,/ H "(K ) £ h(s,n)/8 £ 1 if 8e[1/2,1)
n
and
1 .
(8, / (K ) £ g(8,n)/8 < 1 if
Sefl(1-1/m).sin(n/Nn)—-(1/n),1-2/n)
and using the continuity of p(8§,n)
1 n _n
< 1 € ] T
(13) s,/ K (K) S 1 if  selpin d(T/,T0),1]
1
Using property ii) above we getj{ (Kn) 2 1 .
i
Th K =1 if i 28.
us }{ ( n) if n is even n

The proof of the other cases are similar.

Let n be odd, n27. Define h{(&,n) as in (1i1) and

1/n 1f 56[{2/(1+cos(n/n)?,[(1~1/n).Sin(n/n)—(l/n)],
V2/(l+cos(n/n)).(1-1/n).sin(n/n))
g(&,n)= 2/n if 56[12/(1+c05(n/n)f.(l—l/n).sin(n/n),
V2/(l+cos(n/n)).sin(2n/n)—(2/n))
(j+1)/n  if se[{2/(1l+cos(n/n) t.sin(jin/n)—-(2/n),
V2/(1+cos(n/n) )Y.sin((j+1)n/n)—(2/n))
2 £ j 2(n-1)/2 - 1

g(8;n) 1s defined on [VZ/(l+cos(ﬂ/nf?.[(1—1/n).Sin(n/n)—(l/n)],

V2/(1+cos(n/n)).sin((n-1)n/2n)—(2/n)).
Using lemma 3 a,b,c) we get g(&,n)/8 £ 1. By lemma 4 c,d

1
follows that f(8,n)/} (K ) £ g(8,n)/8 < 1 . Using lemma S a,b,e)

(12) holds for h(8,n). Thus (13) holds and the proofs ends as the

other case.

Case n=4 may be found in [Fal] . The proof given there

is different.

For n=6; h(8,;6) is defined as in (11) and
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1/6 if Sdef(1-1/6).sin(n/6) — 1/6,(1-1/6).5in(nn/6) )
g(8;46)=

173 if 8e[(1-1/6).sin(n/6),sin(n/3) - 1/3]
and the proof runs in a similar way using lemma 3 a;b), lemma 5

asb;e);, lemma 4 a,b).

For n=5% let

1 - 2/5°% if se[1 - 2/5°,1 - 1/5%) i=1,2,...
- ._1 .
h(8,5) = 1 - 1/5% if sef1 - 1/5° .1 - 2755 ) i= 2,3,...
2/5 if 8€[2/5, 1 - 2/5)

g(b6;5) = 1/5 , 1if BE[VZ/(1+CDS(H/5f.[(1—1/5).51n(n/5)—1/5],

V2/(1+cos(n/5) .(1-1/5).sin(n/5)]1 and use lemma 5 c,d,f),4c),3a).
For n=3 we define only one function g(8,3) in the

following way

/ ] ' i+l
| 1-2/3%  if ser1 - 2/3,1 - 5/3%7 ) 121
i+1 i+1 i
9(8,3) = 1 - 5/3770 i seri /301 - 13h) 121
A . "
t - 1/3%  if sert - 1/3%, 1 - 2,377y i 21

|
o
A

Thus g(&§,3) is defined on [1/3,1) and this case follows

from lemma 6.

Example 2. The Koch curve is the unique compact set K such that

where Yiare similitudes of the complex plane defined by Yl(z)=z/3;
Y (z)= z.(1/2 + 1{3/2)/3 + 1/3 ; Y (z) = z.(1/2-i3/2)/3 + (1/2 +
i72(3) 3 Y (2) = 2/3 + 2/3.

4

It is not difficult to see that b(K)=b({O,1,1/2+i/2J§3)
and therefore wusing int ®(K) one can prove that an
‘open set condition’ holds for K. Therefore K is self similar (see
{Fall). Morover s=log 4/log 3.

K can indeed be defined with only two similitudes ie.

K =_5 YO ((K)
i=1 1

where V. (z)= 2. (N3/2 = i/2/F « (172 + i72{3) ;

Yo (2)= z.(-\{372 + i/2yT?-+ 1 ( primes will be used to describe
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elements that arise from this definition).
Property Z holds for K and therefore p(8) is continuous.
Figure 4 shows how K looks like.

Let C be a compact set of diameter & < 1/ 3.[g‘such that

{(by theorem 1 ) p(8) =J£S(CDK). If C intersects Ti or Té but not

-1 -1
both then using Yi (or Yé ) one can prove that

(1) ws N3 ) = ({H°. T eenio

If C intersects both Ti and Té then C must intersect at most

the sets{T T T,,sT

ig 5) . Y T T =
3% 540 '3y {fig 5) But (KH(T23U 24UT U )

32} 31 32

N T i imili 1 i -1
K {TllUT12UT13U 14} where Y is a similitude with contraction ratio

1. Therefore one could assume that C only intersects Ti and (1)

holds. Thus we have proved that if § < 1/3.{g‘then f(g8) =
f(y\3. 8). Therefore theorem 4 holds with €l= Zﬁ, é§ any number
less tham 1/3. (?? and 62 = [5 ,Jg‘ because in its proof we
have not used property A but the thesis of lemma 2.
Also using the continuity of p we have that
i) f(8) €1 6 e [1/3 43, 1/3]

ii) f(8 ) =1 for some 8 € [1/3 .(g‘, 173 ]

We note that property A holds for K for some ZS << 1/3.rq.

Upper and lower bounds for K had been given in [BePa ]

~ —e-4 -2
0.026=2 © © s H Ty < 25 “=0.5995

In [Mar 2 ] was given an alternative proof of the upper bound and
=1 -2
it was conjectured that.j£ (K) = 25 . But we shall see

-2
that indeed K S(x) < 2°7¢

s
Now to get a lower bound for‘}c (K} we need to compute hr

~

The following 1s a table of a function h2 which 1s an

~

h2(6/16)=1/3,J 3

a3

h2(7/16)=2/9

Y

h2(8/16)=2/9

h2(9/16)=0,29397

h2(10/16)=l/3
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'l

h2(11/16)=4/9

approximation of h2 - We recall the definition of h2 H

hz(a) = mina( max d(I' ,T") )
B3 EGZ r,r- =8

where d(.,.) is the usual distance between sets.

Let p =0,p=1,p =1/2 + irz.3, p,=1/3 , p_= 2/3 ,

p= 1/6 + i76.\3, p,= 1/3 + i/ 3.3, Pg= 2/3 + i/3.43, p= 5/6 +

9
i/6 {3  and let I'= T , T'=T. . . Then set

tito 12
d (T, T') = min d(Y, © Y, (p, ), Y. oY. (p.) )
11 12 k Jl >
15k, 159

and define h:2 in the folllowing way:

hz(a) = mina( max d(I" ,T") )
B 662 I',T" €8

Notice that d(I'; I'') - 1/54 < d(I', T') £ d(I'y, T'"). Therefore

and if we define U2 (8):= max{ a : hz(a) £ 8§ } then U25 U2 .

Since h2 {and h2 ) are non decreasing, to compute

Y
~

the supremum of U2 on [ 1/3,43,1/3]1 we do not need all the
values of h2 but those stated in the above table.
This is a general fact ie. Hr and hr are non decreasing

functions if ki= k.for all 1 ,j the contraction ratios of K a self
J

similar set. We left this proof to the reader. Hint: the set

r
=1/k

G: i is the set of all subsets of l-elements of G

From i,ii) above and theorem 2 a) we get

178, < 1/8 ¢« H (k)
27 2
(%3 ~ < S .

where B2= sSuUp U2(8)/8 H Bz= sSup U2(8)/8 . Using the above

SE[1/3,_{§21/3] S5€[1/3. 43,1/3]
table is easy to compute that 82 = 3.723 . Then
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0.26 = H )

We compute now an upper bound.0Observe that G={T212U

T T T uT
T213UT214UT221U 222UT223UT224U 231UT232UT233U 234 241UT242UT243

uT

T T Ut uT
244 311U 312 313 314U

T uTt T T T
321 322 Y 323UT324UT331U 332U 333UT334

T uT h i t ’ ' 92/24 / 0.365
<41 342UT343 } has diameter § (292 3) 3 39

and that} (ank) =30/64 . HZ(K) (see fig. &).

Therefore

30 . M T(ky 7 (68 . 8°° ) £ p(s et

~_s5—2
ie JCT(K) £ 0.5988 < 0.5995 =2°°, This disproves the mentioned
conjecture. The numbers stated in example 2 are all exact up to

the last digit .

fFall Falconer K.J. ; 'The Geometry of Fractal Sets’', Cambridge
University Press, 1989,

[Hut] Hutchinson J.E., 'Fractals and Self-Similarity’, Indiana
University Mathematics Journal, 30, 713-47 (1981).

fMar 1] Marion Jacques, ‘'Mesure de Hausdorff d'un Fractal a
Similitude Interne’, Ann. sc. math. Quebec, 1986, Vol.10 No 1, pp
51-84,

[Mar 2] Marion J., 'Mesures de Hausdorff d ensembles Fractals’,
Ann. sc. math. Quebec, 1987, vol. 11, No i, pp. 111-132.

{BePa] Benedek A. y Panzone R., La Isla de von Koch', Rev. de la
Academia Nacional de Ciencias Exactas, Fisicas y Naturales, 1991.

Note:

Figures 4,5,6,7;8 are computer—made. This is the work of Pedro Pan

'l

zone who kindly also made the software to compute the h_- table.
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