NOTAS DE LÓGICA MATEMÁTICA
41

Antonio A. R. Monteiro and Luiz F. Monteiro

## THREE-VALUED ŁUKASIEWICZ ALGEBRAS

## Preface to this English translation

This is an edition of lecture notes for a course on three-valued Lukasiewicz algebras given by Dr. Antonio A. R. Monteiro in 1963 in the Universidad Nacional del Sur, translated into English for the first time for the series Notas de Lógica Matemática of the Instituto de Matemática de Bahía Blanca (INMABB, CONICET-UNS).

This translation is a group effort. We thank in particular Andrés Gallardo for his careful checking of the proofs and many improvements to the text. Luiz Monteiro supervised and approved this edition. We also thank Rosana Entizne and Fernando Gómez for their help.

## Preface

These lecture notes follow the course on three-valued Eukasiewicz algebras [36] given by Dr. Antonio A. R. Monteiro in 1963 in the Universidad Nacional del Sur, as well as the seminars [37], [44] about this topic, where he presented original results.

The first parts of the course included some background on partially ordered sets, distributive lattices, De Morgan algebras, and monadic boolean algebras, needed to follow the later parts. This background material can be found in the publications [66], [51], and [50].

Dr. Antonio Monteiro usually posed problems during his lectures, and some of them led to the following works, among others:

- The doctoral dissertation of Roberto Cignoli, Álgebras de Moisil de orden $n$ (1969) [12], [13], which presents important results on n-valued Moisil algebras, which have three-valued Łukasiewicz algebras as a particular case. In the bibliography we include 15 works by this author.
- The doctoral dissertation of Luiz Monteiro, Álgebras de Łukasiewicz trivalentes monádicas (1971) [61], [62], which generalizes the concept of threevalued Eukasiewicz algebras.
- The doctoral dissertation of Manuel Abad, Estructuras cíclica y monádica de un álgebra de Łukasiewicz $n$-valente (1986) [36], which generalizes the concept of monadic three-valued Łukasiewicz algebras.
- The doctoral dissertations of Luisa Iturrioz [23] and Aldo V. Figallo [18].

The book Łukasiewicz-Moisil algebras, by V. Boicescu, A. Filipoiu, G. Georgescu, and S. Rudeanu [9] studies more general structures. Published in 1991, it compiles bibliography (up to 1989) related to three-valued Eukasiewicz algebras. In our bibliography we include more works, some of them published after 1989, undoubtedly originated in the topics developed in the course and seminars cited above, and also in the work meetings of Professor A. Monteiro with his disciples. One of these disciples was also his son, Luiz Monteiro, who took upon the task of editing all this material to make it widely available. In doing so, he added many results of his own, so when preparing the translation for this English edition, it was apparent that Luiz should be fully credited as author as well.

To this day, the results by A. Monteiro presented in this lecture notes continue to be cited in the literature.

## Contents

Preface to this English translation ..... i
Preface ..... iii
Chapter 1. Basic definitions and constructions ..... 1
1.1. Definition and calculation rules ..... 1
1.2. Centered Łukasiewicz algebras ..... 5
1.3. Axled Łukasiewicz algebras ..... 6
1.4. Moisil's determination principle ..... 7
1.5. Implications ..... 11
1.6. Heyting algebras ..... 18
1.7. Moisil's definition ..... 24
1.8. New examples ..... 25
1.9. 3 -rings ..... 28
1.10. Construction of Łukasiewicz algebras from monadic boolean algebras ..... 33
1.11. Subalgebras ..... 38
1.12. Complete Łukasiewicz algebras ..... 44
Chapter 2. Homomorphisms, deductive systems and quotients ..... 49
2.1. Homomorphisms ..... 49
2.2. Quotient algebras ..... 54
2.3. Construction of deductive systems ..... 61
2.4. Arithmetics of the deductive systems ..... 65
2.5. Prime filters and deductive systems ..... 74
2.6. Principal deductive systems and their quotient algebras ..... 78
Chapter 3. Products and factors ..... 81
3.1. Simple algebras ..... 81
3.2. Cartesian product ..... 83
3.3. Factorization of an axled Łukasiewicz algebra ..... 84
3.4. Subdirect product of Łukasiewicz algebras ..... 87
3.5. Moisil's representation theorem ..... 88
3.6. Injective Łukasiewicz algebras ..... 90
Chapter 4. Free algebras ..... 93
4.1. Introduction ..... 93
4.2. Determination of the Łukasiewicz algebra $L_{n}$ with $n$ free generators ..... 93
4.3. Free Moisil algebras with a finite number of free generators ..... 96
Chapter 5. Homomorphic images and further constructions ..... 101
5.1. Homomorphic images of a finite boolean algebra ..... 101
5.2. Homomorphic images of a Łukasiewicz algebra ..... 104
5.3. Epimorphisms ..... 105
5.4. Homomorphism extensions ..... 111
5.5. Construction of the free boolean algebras from the free three valued Łukasiewicz algebras ..... 112
5.6. Representation of a Lukasiewicz algebra by sets ..... 115
5.7. Universality of the construction $\mathcal{L}$ of Łukasiewicz algebras ..... 118
5.8. A construction of the Łukasiewicz algebra with $n$ free generators ..... 121
5.9. Determinant system of a Łukasiewicz algebra ..... 122
Chapter 6. Geometric construction of free algebras ..... 133
6.1. Introduction ..... 133
6.2. Geometric construction of the free Łukasiewicz algebras ..... 138
Bibliography ..... 143
Index ..... 147

## CHAPTER 1

## Basic definitions and constructions

### 1.1. Definition and calculation rules

The concept of three-valued Łukasiewicz algebra, was introduced and developed by Gr. Moisil [25], [26], [30].

These algebras play to the Łukasiewicz three-valued propositional calculus, an analogue role to that of boolean algebras to the classical propositional calculus.

The following definition ${ }^{1}$ ([36], [39]) is equivalent to those indicated by Moisil.
Definition 1.1.1. A three-valued Eukasiewicz algebra is a system ( $L, 1, \sim$ , $\nabla, \vee, \wedge$ ) formed by 1) a non-empty set $L$; 2) an element $1 \in L$; 3) two unary operations $\sim$ and $\nabla$ defined on L; 4) two binary operations $\vee$ and $\wedge$, defined on $L$ so that the following conditions are verified:

L1) $1 \vee x=1$, for all $x \in L$,
L2) $x \wedge(x \vee y)=x$, for all $x, y \in L$,
L3) $x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$, for all $x, y, z \in L$,
L4) $\sim \sim x=x$, for all $x \in L$,
L5) $\sim(x \wedge y)=\sim x \vee \sim y$, for all $x, y \in L$,
L6) $\sim x \vee \nabla x=1$, for all $x \in L$,
L7) $\sim x \wedge x=\sim x \wedge \nabla x$, for all $x \in L$,
L8) $\nabla(x \wedge y)=\nabla x \wedge \nabla y$, for all $x, y \in L$.
The operation $\sim$ is denominated negation and $\nabla$ is denominated the possibility operation. We will also say that $L$ is a Lukasiewicz algebra.

One of the first problems posed by Professor Antonio Monteiro in his class was to determine whether these axioms were independent. This was solved by L. Monteiro [54], who proved that axioms L2) to L8) are independent and L1) is a consequence of some of the axioms L2) to L8). One of the examples indicated by L. Monteiro in [54] led A. Monteiro to introduce in 1978 the notion of four-valued modal algebra. He then posed to I. Loureiro the task of developing the theory of these algebras, which she did in her doctoral dissertation [24], defended in Lisbon in 1983.

To establish the equivalence of the definition above with those indicated by Moisil we must put $\sim x=N x$ and $\nabla x=\mu x$.

Another set of axioms for Łukasiewicz algebra was indicated by A. Monteiro and L. Monteiro before 1967, but only published in 1996, [48].

Axioms L1), L2) and L3) are the ones posed by M. Sholander [75] so the system $(L, 1, \wedge, \vee)$ is a distributive lattice with a top element 1 . From axioms L1), L2),

[^0]L3), L4) and L5) it follows that the system $(L, 1, \sim, \wedge, \vee)$ is a De Morgan algebra [6], [7], [51] and therefore $0=\sim 1$ is the bottom element of the lattice $L$.

Therefore we can define a Lukasiewicz algebra as a De Morgan algebra on which an unary operation verifying L6), L7) and L8) is defined.

We shall assume known and use freely the calculation rules valid in De Morgan algebras. We now indicate some calculation rules involving the operator $\nabla$.

L9) $x \leq \nabla x$.
$x=x \wedge 1=($ by L6 $))=x \wedge(\sim x \vee \nabla x)=(x \wedge \sim x) \vee(x \wedge \nabla x)=$ $($ by L7 $))=(\sim x \wedge \nabla x) \vee(x \wedge \nabla x)=(\sim x \vee x) \wedge \nabla x \leq \nabla x$.
L10) $\nabla 1=1$.
Immediate from L9).
L11) $\nabla 0=0$.
$0=0 \wedge 1=0 \wedge \sim 0=($ by L 7$))=\sim 0 \wedge \nabla 0=1 \wedge \nabla 0=\nabla 0$.
L12) If $x \leq y$ then $\nabla x \leq \nabla y$.
We know that $x \leq y \Longleftrightarrow x=x \wedge y$, so $\nabla x=\nabla(x \wedge y)=($ by L8 $))=$ $\nabla x \wedge \nabla y$ and this is equivalent to $\nabla x \leq \nabla y$.
L13) $x \vee \nabla \sim x=1$.
$x \vee \nabla \sim x=($ by L4 4$))=\sim(\sim x) \vee \nabla \sim x=($ by L6 $))=1$.
L14) $\nabla \sim \nabla \sim x \leq x$.
From L13) it follows that $\sim(x \vee \nabla \sim x)=\sim 1$, this is
$\sim x \wedge \sim \nabla \sim x=0$. Then $\nabla(\sim x \wedge \sim \nabla \sim x)=\nabla 0=($ by L11 $))=0$, and using L8) we obtain (1) $\nabla \sim x \wedge \nabla \sim \nabla \sim x=0$.

Finally $x=x \vee 0=($ by (1) $)=x \vee(\nabla \sim x \wedge \nabla \sim \nabla \sim x)=$ $(x \vee \nabla \sim x) \wedge(x \vee \nabla \sim \nabla \sim x)=($ by L13 $))=1 \wedge(x \vee \nabla \sim \nabla \sim x)=$ $x \vee \nabla \sim \nabla \sim x$ from which L14) follows.
L15) $\nabla \sim \nabla \sim \nabla \sim x=\nabla \sim x$.
From L14), $\sim x \leq \sim \nabla \sim \nabla \sim x$, so by L12) we get:
(1) $\nabla \sim x \leq \nabla \sim \nabla \sim \nabla \sim x$. On the other hand, replacing in L14) $x$ by $\nabla \sim x$ we get:
(2) $\nabla \sim \nabla \sim \nabla \sim x \leq \nabla \sim x$. From (1) and (2), L15) follows.

L16) $\nabla \sim \nabla x$ is the boolean complement of $\nabla x$.
If in L13) we replace $x$ by $\nabla x$, we get (1) $\nabla x \vee \nabla \sim \nabla x=1$. From L6) it follows that $\sim(\sim x \vee \nabla x)=\sim 1=0$, this is $x \wedge \sim \nabla x=0$ and therefore (2) $0=\nabla 0=\nabla(x \wedge \sim \nabla x)=$ (by L8) $=\nabla x \wedge \nabla \sim \nabla x$. From (1) and (2), L16) obtains.

L17) $\sim \nabla x$ is the boolean complement of $\nabla x$.
From $x \leq \nabla x$, replacing $x$ by $\sim \nabla x$ we get $\sim \nabla x \leq \nabla \sim \nabla x$, so $\nabla x \wedge \sim \nabla x \leq \nabla x \wedge \nabla \sim \nabla x=$ (by L16) $=0$, and therefore (1) $\nabla x \wedge \sim \nabla x=0$, so $\sim(\nabla x \wedge \sim \nabla x)=\sim 0=1$, this is (2) $\nabla x \vee \sim \nabla x=1$. From (1) and (2), L17) obtains.
L18) $\nabla \sim \nabla x=\sim \nabla x$.
This is an immediate consequence of L16) and L17), since in a distributive lattice if an element has a boolean complement, it is a unique one.
L19) $\nabla \sim \nabla \sim x=\sim \nabla \sim x$.
Follows from L18) replacing $x$ by $\sim x$.

L20) $\nabla \nabla x=\nabla x$.
From L18) it follows that $\sim \nabla \sim \nabla x=\sim \sim \nabla x=\nabla x$, and then (1) $\nabla \sim \nabla \sim \nabla x=\nabla \nabla x$. If we replace $x$ by $\sim x$ in L15) we obtain (2) $\nabla \sim \nabla \sim \nabla x=\nabla x$. From (1) and (2), L20) follows.
An element $x \in L$ of a Eukasiewicz algebra $L$ is called a constant or invariant if $\nabla x=x$. We shall represent by $B(L)$ or just $B$ the set of all the invariant elements of $L$. By L20) it follows that $\nabla x \in B(L)$ for all $x \in L$, so in particular B0) $0,1 \in B(L)$. The set $B(L)$ has also the following properties:

B1) If $x, y \in B(L)$ then $x \wedge y \in B(L)$.
Indeed, by hypothesis $\nabla x=x, \nabla y=y$ so $\nabla(x \wedge y)=($ byL8 $))=$ $\nabla x \wedge \nabla y=x \wedge y$.
B2) If $x \in B(L)$ then $\sim x \in B(L)$.
From L18) we know that $\nabla \sim \nabla x=\sim \nabla x$, so if $\nabla x=x$, we have that $\nabla \sim x=\sim x$.
B3) If $x, y \in B(L)$ then $x \vee y \in B(L)$.
Follows immediately from B1), B2) and axiom L5).
Lemma 1.1.2. (Gr. [25])If $L$ is an Eukasiewicz algebra and $x \in L$ then $x$ is invariant if and only if $x$ is a boolean element.

Proof. It is clear that 0 and 1 are boolean elements of $L$.
Let $x$ be a boolean of $L$ and denote with $-x$ its boolean complement, so $x \wedge-x=0$ and $x \vee-x=1$. By L8) we have (1) $\nabla x \wedge \nabla-x=0$ and by L9) $1=x \vee-x \leq \nabla x \vee \nabla-x$ so (2) $\nabla x \vee \nabla-x=1$. Therefore $\nabla x$ is a boolean element with complement $\nabla-x$. On the other hand, (3) $\nabla x=\nabla x \wedge 1=\nabla x \wedge(x \vee-x)=$ $(\nabla x \wedge x) \vee(\nabla x \wedge-x)=x \vee(\nabla x \wedge-x)$. From $-x \leq \nabla-x$ it follows, using (1) that $-x \wedge \nabla x \leq \nabla-x \wedge \nabla x=0$ and therefore (4) $-x \wedge \nabla x=0$. From (3) and (4) it follows that $\nabla x=x$.

Assume now that $x \in B(L)$, so $\nabla x=x$. By L17) we know that $\nabla x$ is a boolean element with complement $\sim \nabla x$, so since $\sim \nabla x=\sim x$ we can derive $\sim x \wedge x=0$ and $\sim x \vee x=1$, then $x$ is a boolean element with complement $\sim x$.

We have proven that $B(L)$ is a boolean algebra.
L21) $\nabla(x \vee y)=\nabla x \vee \nabla y$.
From $x \leq x \vee y$ it follows by L12) that (1) $\nabla x \leq \nabla(x \vee y)$ and from $y \leq x \vee y$ it follows by L12) that (2) $\nabla y \leq \nabla(x \vee y)$. From (1) and (2) we have:

$$
\text { (3) } \nabla x \vee \nabla y \leq \nabla(x \vee y) \text {. }
$$

By L9) we know that $x \leq \nabla x$ and $y \leq \nabla y$, thus $x \vee y \leq \nabla x \vee \nabla y$ and so using L12) we have $\nabla(x \vee y) \leq \nabla(\nabla x \vee \nabla y)$, and since $\nabla x, \nabla y \in B(L)$ it follows by B3) that $\nabla x \vee \nabla y \in B(L)$, this is $\nabla(\nabla x \vee \nabla y)=\nabla x \vee \nabla y$, so (4) $\nabla(x \vee y) \leq \nabla x \vee \nabla y$. From (3) and (4), L21) follows.
L22) $\sim \nabla \sim x \vee(\nabla x \wedge \nabla \sim x) \vee \sim \nabla x=1$.
$\sim \nabla \sim x \vee(\nabla x \wedge \nabla \sim x) \vee \sim \nabla x=$
$(\sim \nabla \sim x \vee \sim \nabla x) \vee(\nabla x \wedge \nabla \sim x)=$
$(\sim \nabla \sim x \vee \sim \nabla x \vee \nabla x) \wedge(\sim \nabla \sim x \vee \sim \nabla x \vee \nabla \sim x)=($ by L17 $))=$ $1 \wedge 1=1$.
L23) $\nabla(x \wedge \nabla y)=\nabla x \wedge \nabla y$.
$\nabla(x \wedge \nabla y)=($ by L8 $))=\nabla x \wedge \nabla \nabla y=($ by L20 $))=\nabla x \wedge \nabla y$.
We define a new unary operator on $L$ as follows:

$$
\Delta x=\sim \nabla \sim x
$$

and we call it dual operator of $\nabla$ or necessity operator. This terminology is justified by the following calculation rules:
$\left.\mathrm{L} 6^{\prime}\right) \sim x \wedge \Delta x=0$.
$\sim x \wedge \Delta x=\sim x \wedge \sim \nabla \sim x=\sim(x \vee \nabla \sim x)=($ by L6 $))=\sim 1=0$.
$\left.\mathrm{L}^{\prime}\right) ~ x \vee \sim x=\sim x \vee \Delta x$.
$\sim x \vee \Delta x=\sim x \vee \sim \nabla \sim x=\sim(x \wedge \nabla \sim x)=($ by L7 $))=$
$\sim(x \wedge \sim x)=($ by L5 $)$ and L4) $)=\sim x \vee x$.
$\left.\mathrm{L}^{\prime}\right) \Delta(x \vee y)=\Delta x \vee \Delta y, \Delta(x \wedge y)=\Delta x \wedge \Delta y$.
$\Delta(x \vee y)=\sim \nabla \sim(x \vee y)=($ by L5 $))=\sim \nabla(\sim x \wedge \sim y)=($ by L8 $))=$
$\sim(\nabla \sim x \wedge \nabla \sim y)=\sim \nabla \sim x \vee \sim \nabla \sim y=\Delta x \vee \Delta y$.
By applying the negation, L5) and L21), the other equality holds.
L9') $\Delta x \leq x$.
By L9) we know that $\sim x \leq \nabla \sim x$, so $\Delta x=\sim \nabla \sim x \leq \sim \sim x=x$.
We can also prove promptly:
L24) $\nabla \Delta x=\Delta x$ and $\Delta \nabla x=\nabla x$.
Follows from L18).
Clearly every boolean algebra is a Łukasiewicz algebra in which for all $x$, $\nabla x=x$ and $\sim x=-x$.

Given a property $P$ valid in all Łukasiewicz algebra, we call dual of $P$ the property $P^{\prime}$ obtained by interchanging the elements 0 and 1 and the operations $\nabla, \vee, \wedge$ by $\Delta, \wedge, \vee$ respectively. We know that the duals of each of the axioms L1) to L8) used to define Łukasiewicz algebra are also valid in these algebras, so we can state the following result:
"If a property $P$ is valid in a Eukasiewicz algebra then the dual property $P$ " is also valid".

Since the $\nabla$ operator has the properties of a closure operator (because of $L 9$ ), $L 12)$ and $L 20$ )) it is natural to define the following operators:

$$
\begin{gathered}
\text { Ext } x=\sim \nabla x, \text { Int } x=\Delta x, \\
\partial x=\nabla x \wedge \nabla \sim x=\nabla(x \wedge \sim x)
\end{gathered}
$$

called exterior interior and frontier respectively. The calculation rule L22) can now be written as:

$$
\text { L22) } \quad \text { Int } x \vee \partial x \vee E x t x=1
$$

This formula was called by Moisil the principle of the excluded fourth. Notice that:

- Int $x \wedge \partial x=\Delta x \wedge \nabla x \wedge \nabla \sim x=\nabla x \wedge \sim \nabla \sim x \wedge \nabla \sim x=($ by L17 $))=$ $\nabla x \wedge 0=0$.
- Int $x \wedge$ Ext $x=\Delta x \wedge \sim \nabla x=\Delta x \wedge \Delta \sim x=($ by L8' $))=\Delta(x \wedge \sim x)=$
$\sim \nabla \sim(x \wedge \sim x)=\sim \nabla(\sim x \vee x)=\sim(\nabla \sim x \vee \nabla x)=$
$\sim(\nabla(\sim x \vee \nabla x))=($ by L6 $))=\sim \nabla 1=($ by L10 $))=\sim 1=0$.
- $\partial x \wedge$ Ext $x=\nabla x \wedge \nabla \sim x \wedge \sim \nabla x=($ by L17 $))=0$.

Lemma 1.1.3. If (1) $x \wedge \sim x=0$ then a) $\partial x=0$, b) $\nabla x=x$, c) Int $x=x$ and d) Ext $x=\sim x$.

Proof. a) $\partial x=\nabla(x \wedge \sim x)=\nabla 0=0$.
From (1) it follows that (2) $x \vee \sim x=1$, so $\nabla x=\nabla x \wedge 1=\nabla x \wedge(x \vee \sim x)=$ $(\nabla x \wedge x) \vee(\nabla x \wedge \sim x)=($ by L9 $)$ and L7) $)=x \vee(x \wedge \sim x)=x$, and therefore Ext $x=\sim \nabla x=\sim x$. We already saw that (3) $0=\partial x=\nabla x \wedge \nabla \sim x$, then $\nabla \sim x=\nabla \sim x \wedge 1=($ by $(2))=\nabla \sim x \wedge(x \vee \sim x)=(\nabla \sim x \wedge x) \vee(\nabla \sim x \wedge \sim x)=$ (by (3) and L9)) $=0 \vee \sim x=\sim x$, so Int $x=\Delta x=\sim \nabla \sim x=\sim \sim x=x$.

### 1.2. Centered Łukasiewicz algebras

An element $c$ of a Lukasiewicz algebra $L$ is called a center of $L$, if $\sim c=c$ (Moisil, [25]). This notion coincides with the corresponding one for order 3 Post algebras. For more on this see G. Epstein, The lattice theory of Post algebras, Trans. Amer. Math. Soc., 95 (1960), 300-317, and T. Traczyk, Axioms and some properties of Post algebras, Colloq. Math., 10 (1963), 193-209.

In case a Łukasiewicz algebra has a center, it will be called a centered Łukasiewicz algebra, or a Łukasiewicz algebra with center.

Lemma 1.2.1. For an element $c$ in a Łukasiewicz algebra $L$ to be a center of $L$, it is necessary and sufficient that $\Delta c=0$ and $\nabla c=1$.

Proof. Assume that $\sim c=c$. Then by axiom L6) and property L9) we get

$$
1=\sim c \vee \nabla c=c \vee \nabla c=\nabla c .
$$

By L6') and L9') we have

$$
0=\sim c \wedge \Delta c=c \wedge \Delta c=\Delta c=0
$$

Assume now $\Delta c=0$ and $\nabla c=1$. By L7 we get $c \wedge \sim c=\sim c \wedge \nabla c=$ $\sim c \wedge 1=\sim c$, so $\sim c \leq c$. By L7'), $c \vee \sim c=\sim c \vee \Delta c=\sim c \vee 0=\sim c$, this is $c \leq \sim c$.

Lemma 1.2.2. If a Eukasiewicz algebra $L$ has a center, it is unique.
Proof. Assume that $c_{1}$ and $c_{2}$ are centers of $L$ this is $\nabla c_{1}=\nabla c_{2}=1$ and $\Delta c_{1}=\Delta c_{2}=0$. Then $\nabla\left(c_{1} \wedge c_{2}\right)=\nabla c_{1} \wedge \nabla c_{2}=1 \wedge 1=1$ and $\Delta\left(c_{1} \wedge c_{2}\right)=$ $\Delta c_{1} \wedge \Delta c_{2}=0 \wedge 0=0$. Consequently $c=c_{1} \wedge c_{2}$ is a center of $L$ so, by Lemma 1.2.1 $c=\sim c$ this is $c_{1} \wedge c_{2}=\sim\left(c_{1} \wedge c_{2}\right)=\sim c_{1} \vee \sim c_{2}=c_{1} \vee c_{2}$ and therefore $c_{1}=c_{2}$.

Note that to prove the preceding lemma, G. Moisil used Lemma 1.2.1 and the determination principle which we present next. Further on, (Lemma 1.4.4) we will indicate a different proof for Lemma 1.2.2.

Let us see some examples of centered Łukasiewicz algebras.

Example 1.2.3. Let $\mathbf{T}=\{0, c, 1\}$ be a partially ordered set (from now on, poset) with $0<c<1$, so since $\mathbf{T}$ is a finite chain, $\mathbf{T}$ is a bounded distributive lattice. The operations $\sim, \nabla, \Delta$ are defined by the following tables:


| $x$ | $\sim x$ | $\nabla x$ | $\Delta x$ |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| $c$ | $c$ | 1 | 0 |
| 1 | 0 | 1 | 1 |

Example 1.2.4. Consider the distributive lattice $L$ with Hasse diagram indicated below in which the operations $\sim, \nabla, \Delta$ are given by the following table:


| $x$ | $\sim x$ | $\nabla x$ | $\Delta x$ |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 |
| $a$ | $g$ | $d$ | 0 |
| $b$ | $f$ | $e$ | 0 |
| $c$ | $c$ | 1 | 0 |
| $d$ | $e$ | $d$ | $d$ |
| $e$ | $d$ | $e$ | $e$ |
| $f$ | $b$ | 1 | $d$ |
| $g$ | $a$ | 1 | $e$ |
| 1 | 0 | 1 | 1 |

Lemma 1.2.5. If $L$ is a Lukasiewicz algebra with center $c$ and $b \in B(L)$ then: $c \wedge b=0$ if and only if $b=0$.

Proof. The condition is obviously sufficient. If $c \wedge b=0$ then, since $b$ is boolean:

$$
b=1 \wedge b=\nabla c \wedge \nabla b=\nabla(c \wedge b)=0
$$

### 1.3. Axled Łukasiewicz algebras

An element $e$ of a Łukasiewicz algebra $L$ is called an axis of $L$ ([27], p.88) if:
E1) $\Delta e=0$,
E2) $\nabla x \leq \Delta x \vee \nabla e$, for all $x \in L$.
In case a Łukasiewicz algebra has an axis, it will be called an axled Łukasiewicz algebra, or a Łukasiewicz algebra with axis.

Note that condition E2) is equivalent to any of the two following ones ([62]):
E3) $\nabla x=\nabla x \wedge(\Delta x \vee \nabla e)$,
E4) $\nabla x \vee \nabla e=\Delta x \vee \nabla e$.
Example 1.3.1. Consider the distributive lattice $A$ with Hasse diagram indicated below and in which the operators $\sim, \nabla, \Delta$ are defined by the following table:


| $x$ | $\sim x$ | $\nabla x$ | $\Delta x$ | $\Delta x \vee \nabla e$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | $d$ |
| $a$ | $d$ | $a$ | $a$ | 1 |
| $b$ | $e$ | 1 | $a$ | 1 |
| $d$ | $a$ | $d$ | $d$ | $d$ |
| $e$ | $b$ | $d$ | 0 | $d$ |
| 1 | 0 | 1 | 1 | 1 |

Example 1.3.2. Consider the distributive lattice with Hasse diagram indicated below with the operators $\sim, \nabla, \Delta$ defined by the following table:


| $x$ | $\sim x$ | $\nabla x$ | $\Delta x$ | $\Delta x \vee \nabla e$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | $h$ |
| $a$ | $j$ | $a$ | $a$ | $i$ |
| $b$ | $i$ | $b$ | $b$ | $j$ |
| $c$ | $h$ | $c$ | $c$ | 1 |
| $d$ | $g$ | $i$ | $a$ | $i$ |
| $e$ | $f$ | $h$ | 0 | $h$ |
| $f$ | $e$ | 1 | $c$ | 1 |
| $g$ | $d$ | $j$ | $b$ | $j$ |
| $h$ | $c$ | $h$ | $h$ | $h$ |
| $i$ | $b$ | $i$ | $i$ | $i$ |
| $j$ | $a$ | $j$ | $j$ | $j$ |
| 1 | 0 | 1 | 1 | 1 |

### 1.4. Moisil's determination principle

We indicate now the proof of the so called Moisil's determination principle:
If $L$ is a Lukasiewicz algebra and $a, b \in L$ are such that

$$
\nabla a=\nabla b \text { and } \Delta a=\Delta b \text { then } a=b .
$$

Note that in the initial definitions of Łukasiewicz algebra given by Moisil, this principle was taken as an axiom. Later Moisil [26] defined the Łukasiewicz algebras using equalities, from which he proved this principle.

Let $L$ be a Lukasiewicz algebra, $p, u \in B(L)$ such that $p \leq u$, and

$$
L^{\prime}=[p, u]=\{x \in L: p \leq x \leq u\} .
$$

Given $x \in L$ define:

$$
\approx x=p \vee(u \wedge \sim x)
$$

Observe that $p \leq p \vee(u \wedge \sim x)=\approx x$. On the other hand, $\approx x=p \vee(u \wedge \sim x)=$ $(p \vee u) \wedge(p \vee \sim x)=u \wedge(p \vee \sim x) \leq u$. Then $\approx x \in L^{\prime}$, for all $x \in L$. If $x \in L^{\prime}$ then $p \leq x \leq u$ and since $p, u \in B(L)$ we have by $L 9)$ that $p=\nabla p \leq \nabla x \leq \nabla u=u$.

Therefore if $x \in L^{\prime}$ then $\approx x, \nabla x \in L^{\prime}$. Thus we have two unary operations defined on $L^{\prime}$.

Theorem 1.4.1. The system $\left(L^{\prime}, u, \approx, \nabla, \wedge, \vee\right)$ is a Eukasiewicz algebra.
Proof. It is well known that $\left(L^{\prime}, p, u, \wedge, \vee\right)$ is a distributive lattice with top element $u$ and bottom element $p$.

Since $p, u \in B(L)$, then $p \wedge \sim p=0, p \vee \sim p=1, u \wedge \sim u=0, u \vee \sim u=1$.
L4) Let $x \in L^{\prime}$ then $\approx \approx x=p \vee(u \wedge \sim(\approx x))=$

$$
\begin{aligned}
& p \vee(u \wedge \sim(p \vee(u \wedge \sim x)))=p \vee(u \wedge \sim p \wedge(\sim u \vee x))= \\
& (p \vee u) \wedge(p \vee \sim p) \wedge(p \vee \sim u \vee x)=u \wedge 1 \wedge(\sim u \vee x)= \\
& u \wedge(\sim u \vee x)=(u \wedge \sim u) \vee(u \wedge x)=0 \vee(u \wedge x)=u \wedge x=x
\end{aligned}
$$

L5) Let $x, y \in L^{\prime}$, so $x \wedge y \in L^{\prime}$ and $\approx(x \wedge y)=p \vee(u \wedge \sim(x \wedge y))=$ $p \vee(u \wedge(\sim x \vee \sim y))=p \vee(u \wedge \sim x) \vee(u \wedge \sim y)=$ $p \vee(u \wedge \sim x) \vee p \vee(u \wedge \sim y)=\approx x \vee \approx y$.
L6) If $x \in L^{\prime}$ then $\nabla x \leq u$ and therefore $\approx x \vee \nabla x=p \vee(u \wedge \sim x) \vee \nabla x=$ $p \vee((u \vee \nabla x) \wedge(\sim x \vee \nabla x))=p \vee(u \wedge 1)=p \vee u=u$.
L7) If $x \in L^{\prime}$ then $\approx x \wedge \nabla x=(p \vee(u \wedge \sim x)) \wedge \nabla x=(p \wedge \nabla x) \vee(u \wedge \sim x \wedge \nabla x)=$ $p \vee(u \wedge \sim x \wedge \nabla x)=p \vee(u \wedge \sim x \wedge x)=(p \vee(u \wedge \sim x)) \wedge(p \vee x)=$ $\approx x \wedge x$.
L8) Let $x, y \in L^{\prime}$, so $x \wedge y \in L^{\prime}$ and $\nabla(x \wedge y)=\nabla x \wedge \nabla y$.
Note that in $L^{\prime}$ the necessity operator is defined by $\approx \nabla \approx x$, with $x \in L^{\prime}$. Using the fact that $p, u \in B(L), p \leq u$ and that $p \leq \Delta x \leq u$, then if $x \in L^{\prime}$ we have:

$$
\begin{gathered}
\approx \nabla \approx x=\approx \nabla(p \vee(u \wedge \sim x))=\approx(\nabla p \vee(\nabla u \wedge \nabla \sim x))= \\
\approx(p \vee(u \wedge \nabla \sim x))=p \vee(u \wedge \sim(p \vee(u \wedge \nabla \sim x)))= \\
p \vee(u \wedge(\sim p \wedge(\sim u \vee \sim \nabla \sim x)))=(p \vee u) \wedge(p \vee \sim p) \wedge(p \vee \sim u \vee \Delta x))= \\
u \wedge 1 \wedge(p \vee \sim u \vee \Delta x)=u \wedge(p \vee \sim u \vee \Delta x)= \\
(u \wedge p) \vee(u \wedge \sim u) \vee(u \wedge \Delta x)=p \vee 0 \vee \Delta x=\Delta x
\end{gathered}
$$

We prove now Moisil's determination principle. Assume that $a, b \in L$ verify $\nabla a=\nabla b$ and $\Delta a=\Delta b$. Since $p=\Delta a \leq \nabla a=u$ we can consider the interval $L^{\prime}=[\Delta a, \nabla a]=[\Delta b, \nabla b]$. Since $\Delta a, \nabla a \in B(L)$ then by the previous theorem $\left(L^{\prime}, u=\nabla a, \approx, \nabla, \wedge, \vee\right)$ is a Łukasiewicz algebra, in which if $x \in L^{\prime}$, then $\approx x=$ $\Delta a \vee(\nabla a \wedge \sim x)$. We shall prove that the element $a$ in $L^{\prime}$, is a center of $L^{\prime}$, this is, that $\approx a=a$. Indeed $\approx a=\Delta a \vee(\nabla a \wedge \sim a)=\Delta a \vee(a \wedge \sim a)=$ $(\Delta a \vee a) \wedge(\Delta a \vee \sim a)=a \wedge(a \vee \sim a)=a$.

In analogous way one can prove that $b$ is a center of $L^{\prime}$, then by Lemma 1.2.2, $a=b$.

Immediately after proving this, Professor A. Monteiro posed his students the problem of finding a proof of Moisil's determination principle starting from the axioms for three-valued Łukasiewicz algebras. This was solved in 1965 by L. Monteiro and published in 1969 in [58]. Since that publication has several typos, we reproduce the proof here.

Note that in every Łukasiewicz algebra $L$ it holds that:

$$
\text { (1) } x=(\Delta x \vee \sim x) \wedge \nabla x=(\nabla x \wedge \sim x) \vee \Delta x \text {. }
$$

Indeed, using L7') and L7):

$$
\begin{gathered}
(\Delta x \vee \sim x) \wedge \nabla x=(x \vee \sim x) \wedge \nabla x=(x \wedge \nabla x) \vee(\sim x \wedge \nabla x)=x \vee(x \wedge \sim x)=x . \\
x=(\Delta x \vee \sim x) \wedge \nabla x=(\Delta x \wedge \nabla x) \vee(\sim x \wedge \nabla x)=\Delta x \vee(\sim x \wedge \nabla x) .
\end{gathered}
$$

Assume now that $a, b \in L$ verify (2) $\nabla a=\nabla b$ and (3) $\Delta a=\Delta b$, then:

$$
\begin{gathered}
a \vee b=(\text { by }(1))=(\Delta(a \vee b) \vee \sim(a \vee b)) \wedge \nabla(a \vee b)= \\
(\Delta a \vee \Delta b) \vee(\sim a \wedge \sim b)) \wedge(\nabla a \vee \nabla b)=(b y(2) \text { and }(3))= \\
(\Delta a \vee(\sim a \wedge \sim b)) \wedge \nabla a=(\Delta a \vee \sim a) \wedge(\Delta a \vee \sim b) \wedge \nabla a= \\
((\Delta a \vee \sim a) \wedge \nabla a) \wedge((\Delta a \vee \sim b) \wedge \nabla a)=(b y(2) \text { and }(3))= \\
((\Delta a \vee \sim a) \wedge \nabla a) \wedge((\Delta b \vee \sim b) \wedge \nabla b)=(b y(1))=a \wedge b
\end{gathered}
$$

Then $a \vee b=a \wedge b$ and therefore $a=a \wedge(a \vee b)=a \wedge(a \wedge b)=a \wedge b=$ $b \wedge(a \wedge b)=b \wedge(a \vee b)=b$.

As a corollary to Moisil's determination principle we have:
Corollary 1.4.2. $x \leq y$ if and only if $\Delta x \leq \Delta y$ and $\nabla x \leq \nabla y$.
Lemma 1.4.3. Every Eukasiewicz algebra L is a Kleene algebra, this is,
(K) $\quad x \wedge \sim x \leq y \vee \sim y$, for all $x, y \in L$.

Proof. We want to prove that (1) $x \wedge \sim x=(x \wedge \sim x) \wedge(y \vee \sim y)$. Using L6), L9) and L21) respectively we have

$$
1=\sim y \vee \nabla y \leq \nabla \sim y \vee \nabla y=\nabla(\sim y \vee y)
$$

and therefore (2) $\nabla(\sim y \vee y)=1$. Using the duality principle we also get (3) $\Delta(\sim x \wedge x)=0$. Now applying L8) and (2) we get:
(4) $\nabla((x \wedge \sim x) \wedge(y \vee \sim y))=\nabla(x \wedge \sim x) \wedge \nabla(y \vee \sim y)=$

$$
\nabla(x \wedge \sim x) \wedge 1=\nabla(x \wedge \sim x)
$$

From L8') and (3) we deduce:

$$
\begin{aligned}
& \text { (5) } \Delta((x \wedge \sim x) \wedge(y \vee \sim y))=\Delta(x \wedge \sim x) \wedge \Delta(y \vee \sim y)= \\
& 0 \wedge \Delta(y \vee \sim y)=0=\Delta(x \wedge \sim x) .
\end{aligned}
$$

From (4) and (5), using Moisil's determination principle it follows that (1) is verified.

A proof of the previous result, not using Moisil's determination principle was indicated by L. Monteiro:

Let $p=(x \wedge \sim x) \wedge(y \vee \sim y)$, so (1) $p \leq \sim x \wedge x$. We just saw that in every Łukasiewicz algebra $a=(\Delta a \vee \sim a) \wedge \nabla a$ holds for every $a \in L$, then $p=(\Delta p \vee \sim p) \wedge \nabla p$.

Since by the proof of Lemma 1.4.3, $\Delta p=0$ and $\nabla p=\nabla x \wedge \nabla \sim x$, then:

$$
\begin{gathered}
\text { (2) } p=\sim p \wedge \nabla p=((\sim x \vee x) \vee(\sim y \wedge y)) \wedge \nabla x \wedge \nabla \sim x= \\
(\sim x \wedge \nabla x \wedge \nabla \sim x) \vee(x \wedge \nabla x \wedge \nabla \sim x) \vee(\sim y \wedge y \wedge \nabla x \wedge \nabla \sim x)=
\end{gathered}
$$

$$
\begin{gathered}
(\sim x \wedge \nabla x) \vee(x \wedge \nabla \sim x) \vee(\sim y \wedge y \wedge \nabla x \wedge \nabla \sim x)= \\
(\sim x \wedge x) \vee(x \wedge \sim x) \vee(\sim y \wedge y \wedge \nabla x \wedge \nabla \sim x)= \\
(\sim x \wedge x) \vee(\sim y \wedge y \wedge \nabla x \wedge \nabla \sim x) \geq \sim x \wedge x
\end{gathered}
$$

From (1) and (2) it follows that $x \wedge \sim x=p=(x \wedge \sim x) \wedge(y \vee \sim y)$.
Lemma 1.4.4. If $A$ is a Kleene algebra and there exists an element $w \in A$ such that $\sim w=w$, then it is the unique one with this property.

Proof. If $z=\sim z$ then by condition (K) we have

$$
z=z \wedge \sim z \leq w \vee \sim w=w \text { and } w=w \wedge \sim w \leq z \vee \sim z=z
$$

Lemma 1.4.5. If $L$ is a Eukasiewicz algebra with axis e, then for all $x \in L$,
a) $x=\Delta x \vee(e \wedge \nabla x \wedge \nabla \sim x)$. (G. Moisil, [27])
b) $x=(\Delta x \vee e) \wedge \nabla x=(\nabla x \wedge e) \vee \Delta x$. (L. Monteiro, [61])
c) $x=(\Delta x \vee \sim e) \wedge \nabla x=(\nabla x \wedge \sim e) \vee \Delta x$. (L. Monteiro, [61])

Proof. a) Let $a=\Delta x \vee(e \wedge \nabla x \wedge \nabla \sim x)$ then
(1) $\Delta a=\Delta x \vee(\Delta e \wedge \nabla x \wedge \nabla \sim x)=\Delta x \vee(0 \wedge \nabla x \wedge \nabla \sim x)=\Delta x$, and
$\nabla a=\Delta x \vee(\nabla e \wedge \nabla x \wedge \nabla \sim x)=(\Delta x \vee \nabla e) \wedge(\Delta x \vee \nabla x) \wedge(\Delta x \vee \nabla \sim x)=$ $(\Delta x \vee \nabla e) \wedge \nabla x \wedge 1=(\Delta x \vee \nabla e) \wedge \nabla x$.
By condition E3) we know that $\nabla x=(\Delta x \vee \nabla e) \wedge \nabla x$, so (2) $\nabla a=\nabla x$. From (1) and (2), by Moisil's determination principle, it follows property a).
b) From a) it follows that $x=(\Delta x \vee e) \wedge(\Delta x \vee \nabla x) \wedge(\Delta x \vee \nabla \sim x)=$ $(\Delta x \vee e) \wedge \nabla x \wedge 1=(\Delta x \vee e) \wedge \nabla x=(\Delta x \wedge \nabla x) \vee(e \wedge \nabla x)=\Delta x \vee(e \wedge \nabla x)$.
c) By b$) \sim x=(\Delta \sim x \vee e) \wedge \nabla \sim x$ so $x=\sim \sim x=(\nabla x \wedge \sim e) \vee \Delta x=$ $(\nabla x \vee \Delta x) \wedge(\Delta x \vee \sim e)=\nabla x \wedge(\Delta x \vee \sim e)$.

Lemma 1.4.6. If $L$ is a Lukasiewicz algebra such that there exists an element $e \in L$ verifying:

E1) $\Delta e=0$,
E2') $x=(\Delta x \vee e) \wedge \nabla x$, for all $x \in L$
then $e$ is an axis of $L$ (L. Monteiro, [61]).
Proof. By hypothesis E1) holds, and from E2') it follows that $\nabla x=$ $(\Delta x \vee \nabla e) \wedge \nabla x$ this is, E3) holds, which is equivalent to E2). Then $e$ is an axis of $L$.

Lemma 1.4.7. If $c$ is a center of a Eukasiewicz algebra $L$, then $c$ is an axis of $L$.

Proof. By hypothesis $\Delta c=0$ and $\nabla c=1$ so $\nabla x \leq 1=\Delta x \vee \nabla c$. This proves that $c$ verifies conditions E1) and E2), so $c$ is an axis of $L$.

Lemma 1.4.8. If $c$ is a center of a Eukasiewicz algebra $L$ then:

$$
x=(\Delta x \vee c) \wedge \nabla x=(\nabla x \wedge c) \vee \Delta x, \text { for all } x \in L
$$

Proof. Follows from Lemma 1.4.7 and Lemma 1.4.5, b).
It is clear to see that every boolean algebra is a Lukasiewicz algebra with the bottom element 0 as its axis.

Lemma 1.4.9. Let $L$ be a Eukasiewicz algebra that is not a boolean algebra. If $e$ is an axis of $L$ then, $e \neq 0$ and $e \neq 1$.

Proof. If $e=1$ then $0=\Delta e=1$ and $L$ is a boolean algebra with a single element. If $e=0$ then by E2): $\nabla x \leq \Delta x \vee \nabla e=\Delta x \vee 0=\Delta x$, this is $\nabla x=\Delta x$ for all $x \in L$ and therefore $\nabla x=x$ for all $x \in L$, so $L$ would be a boolean algebra.

Lemma 1.4.10. $\Delta x=0$ if and only if $x \leq \sim x$.
Proof. If $\Delta x=0$, then since $x=(\Delta x \vee \sim x) \wedge \nabla x$, we have that $x=\sim x \wedge \nabla x \leq \sim x$.

If $x \leq \sim x$ then $\Delta x=\Delta x \wedge x \leq \Delta x \wedge \sim x=0$.

### 1.5. Implications

In these algebras, several implication operations may be defined. Among them we have:

$$
\begin{gather*}
a \rightarrow b=\nabla \sim a \vee b,  \tag{1.5.1}\\
a \mapsto b=(a \rightarrow b) \wedge(\sim b \rightarrow \sim a),  \tag{1.5.2}\\
a \Rightarrow b=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b) \vee(\Delta a \wedge b \wedge \sim b) . \tag{1.5.3}
\end{gather*}
$$

These operations are called weak implication, contraposed implication or Eukasiewicz implication, and intuitionistic implication [28, 29, 31].

Lemma 1.5.1. $a \mapsto b=\sim a \vee b \vee(\nabla \sim a \wedge \nabla b)$.

$$
\text { Proof. } a \hookrightarrow b=(\nabla \sim a \vee b) \wedge(\nabla b \vee \sim a)=
$$

$$
(\nabla \sim a \wedge \nabla b) \vee(\nabla \sim a \wedge \sim a) \vee(b \wedge \nabla b) \vee(b \wedge \sim a)=
$$

$$
(\nabla \sim a \wedge \nabla b) \vee \sim a \vee b \vee(b \wedge \sim a)=(\nabla \sim a \wedge \nabla b) \vee \sim a \vee b=
$$

$$
\sim a \vee b \vee(\nabla \sim a \wedge \nabla b)
$$

Lemma 1.5.2. $a \Rightarrow b=\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b)$. (A. Monteiro [44])
Proof. From (1.5.3) it follows that:
(i) $\Delta(a \Rightarrow b)=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b) \vee(\Delta a \wedge \Delta b \wedge \Delta \sim b)=$
$\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b)=\Delta(\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b))$.
From (1.5.3) we obtain

$$
\begin{aligned}
& \text { (ii) } \nabla(a \Rightarrow b)=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b) \vee(\Delta a \wedge \nabla b \wedge \nabla \sim b)= \\
& \Delta \sim a \vee[(\Delta b \vee \Delta a) \wedge(\Delta b \vee \nabla b) \wedge(\Delta b \vee \nabla \sim b)] \vee(\nabla \sim a \wedge \nabla b)= \\
& \Delta \sim a \vee[(\Delta b \vee \Delta a) \wedge \nabla b] \vee(\nabla \sim a \wedge \nabla b)= \\
& \Delta \sim a \vee(\Delta b \wedge \nabla b) \vee(\Delta a \wedge \nabla b) \vee(\nabla \sim a \wedge \nabla b)= \\
& \Delta \sim a \vee \Delta b \vee(\Delta a \wedge \nabla b) \vee(\nabla \sim a \wedge \nabla b)=
\end{aligned}
$$

```
\(\Delta \sim a \vee \Delta b \vee(\nabla b \wedge(\Delta a \vee \nabla \sim a))=\Delta \sim a \vee \Delta b \vee \nabla b=\Delta \sim a \vee \nabla b=\)
\(\Delta \sim a \vee \nabla b \vee(\nabla \sim a \wedge \nabla b)=\nabla(\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b))\).
```

Then, by Moisil's determination principle, from (i) and (ii) the lemma follows.

Note that $a \Rightarrow b=\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b)=$
$(\Delta \sim a \vee b \vee \nabla \sim a) \wedge(\Delta \sim a \vee b \vee \nabla b)=(\nabla \sim a \vee b) \wedge(\Delta \sim a \vee \nabla b)=$ $(a \rightarrow b) \wedge(\nabla a \rightarrow \nabla b)$.
From (1.5.1), Lemma 1.5.2, and Lemma 1.5.1 it follows that:

$$
\begin{equation*}
a \Rightarrow b \leq a \longmapsto b \leq a \rightarrow b \tag{1.5.4}
\end{equation*}
$$

If $b=0$ then from (1.5.1) to (1.5.3) we have that $a \Rightarrow 0=\Delta \sim a=\sim \nabla a$, $a \mapsto 0=\sim a$ and $a \rightarrow 0=\nabla \sim a$. Then by (1.5.4) we have that:

$$
\begin{equation*}
\sim \nabla a \leq \sim a \leq \nabla \sim a \tag{1.5.5}
\end{equation*}
$$

Thus we are led to consider the following operations:

$$
\begin{align*}
& \neg a=a \Rightarrow 0=\sim \nabla a, \text { (Strong negation), }  \tag{1.5.6}\\
& \sim a=a \mapsto 0, \text { (Negation), }  \tag{1.5.7}\\
&\ulcorner a=a \rightarrow 0=\nabla \sim a \text {, (Weak negation). } \tag{1.5.8}
\end{align*}
$$

This terminology is due to Moisil. We can interpret the elements of a Łukasiewicz algebra as a set of propositions, the symbols $\wedge, \vee$ and $\sim$ representing the logical connectives and, or, and not, respectively, and $\nabla$ and $\Delta$ representing it is possible and it is necessary respectively. Moisil indicated the following example to justify his terminology. Assume that " $a$ " represents the proposition "I write" then we have:

- $\sim a=I$ do not write,
- $\neg a=\sim \nabla a=$ It is not possible that I write $=$ It is impossible that I write,
- $\ulcorner a=\nabla \sim a=$ It is possible that I don't write.
then by (1.5.5) we have:

$$
\begin{equation*}
\neg a \leq \sim a \leq\ulcorner a . \tag{1.5.9}
\end{equation*}
$$

therefore $\neg$ is the strongest negation, $\ulcorner$ the weakest negation, and $\sim$ an intermediate negation between the two preceding ones.

Note that from the following inequality:

$$
\begin{equation*}
\Delta a \leq a \leq \nabla a \tag{1.5.10}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\neg a=\sim \nabla a \leq \sim a \leq \sim \Delta a=\nabla \sim a=\ulcorner a . \tag{1.5.11}
\end{equation*}
$$

Inequality (1.5.10) tells us that $\Delta a$ is stronger proposition than $a$ and that $a$ is a stronger proposition than $\nabla a$, which agrees with the intuitive interpretation. By (1.5.11) we see that the negation of the stronger proposition becomes the weaker one and the negation of the weaker proposition becomes the stronger one.

The tables for $\rightarrow, \hookrightarrow$ and $\Rightarrow$ for the Eukasiewicz algebra $T$ indicated in Example 1.2.3 are:

| $\rightarrow$ | 0 | $c$ | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| $c$ | 1 | 1 | 1 |
| 1 | 0 | $c$ | 1 |


| $\bullet$ | 0 | $c$ | 1 |
| ---: | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| $c$ | $c$ | 1 | 1 |
| 1 | 0 | $c$ | 1 |


| $\Rightarrow$ | 0 | $c$ | 1 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 |
| $c$ | 0 | 1 | 1 |
| 1 | 0 | $c$ | 1 |

Łukasiewicz studied a propositional calculus having as characteristic matrix the system $(T, \sim, \longrightarrow)$.

Lemma 1.5.3. $(a \Rightarrow b) \vee(\sim b \Rightarrow \sim a)=a \mapsto b$. (Moisil)
Proof. Using Lemma 1.5.2 we have:
$(a \Rightarrow b) \vee(\sim b \Rightarrow \sim a)=$
$\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b) \vee \Delta b \vee \sim a \vee(\nabla b \wedge \nabla \sim a)=\sim a \vee b \vee(\nabla \sim a \wedge \nabla b)=$ (by Lemma 1.5.1) $=a \mapsto b$.

Lemma 1.5.4. $(a \hookrightarrow b) \hookrightarrow b=a \vee b$.
Proof. $(a \hookrightarrow b) \mapsto b=\sim(a \hookrightarrow b) \vee b \vee(\nabla \sim(a \hookrightarrow b) \wedge \nabla b)$.
Since $\sim(a \mapsto b) \vee b=(a \wedge \sim b \wedge(\Delta a \vee \Delta \sim b)) \vee b=$
$(a \wedge \sim b \wedge \Delta a) \vee(a \wedge \sim b \wedge \Delta \sim b) \vee b=(\sim b \wedge \Delta a) \vee(a \wedge \Delta \sim b) \vee b, \quad$ and $\nabla \sim(a \mapsto b) \wedge \nabla b=\nabla a \wedge \nabla \sim b \wedge(\Delta a \vee \Delta \sim b) \wedge \nabla b=$
$(\nabla a \wedge \nabla \sim b \wedge \Delta a \wedge \nabla b) \vee(\nabla a \wedge \nabla \sim b \wedge \Delta \sim b \wedge \nabla b)=\nabla \sim b \wedge \Delta a \wedge \nabla b$, then:
$(a \hookrightarrow b) \mapsto b=(\sim b \wedge \Delta a) \vee(a \wedge \Delta \sim b) \vee b \vee(\nabla \sim b \wedge \Delta a \wedge \nabla b)=$
$(\Delta a \wedge(\sim b \vee(\nabla \sim b \wedge \nabla b)) \vee(a \wedge \Delta \sim b) \vee b=$
$(\Delta a \wedge(\sim b \vee \nabla \sim b) \wedge(\sim b \vee \nabla b)) \vee(a \wedge \Delta \sim b) \vee b=$
$(\Delta a \wedge \nabla \sim b) \vee(a \wedge \Delta \sim b) \vee b=$
$((\Delta a \vee b) \wedge(\nabla \sim b \vee b)) \vee(a \wedge \Delta \sim b)=\Delta a \vee b \vee(a \wedge \Delta \sim b)$. So:
(1) $\Delta((a \multimap b) \multimap b)=\Delta a \vee \Delta b \vee(\Delta a \wedge \Delta \sim b)=\Delta a \vee \Delta b=\Delta(a \vee b)$ and
(2) $\nabla((a \hookrightarrow b) \mapsto b)=\Delta a \vee \nabla b \vee(\nabla a \wedge \Delta \sim b)=$
$(\Delta a \vee \nabla b \vee \nabla a) \wedge(\Delta a \vee \nabla b \vee \Delta \sim b)=(\nabla b \vee \nabla a) \wedge(\Delta a \vee \nabla b \vee \sim \nabla b)=$ $(\nabla a \vee \nabla b) \wedge 1=\nabla a \vee \nabla b=\nabla(a \vee b)$.
From (1) and (2) using Moisil's determination principle it follows that
$(a \multimap b) \rightharpoondown b=a \vee b$.
Corollary 1.5.5. $(a \hookrightarrow b) \rightharpoondown b=(b \hookrightarrow a) \mapsto a$.
Lemma 1.5.6. $a \rightarrow b=a \longmapsto(a \mapsto b)$.
Proof. By Lemma 1.5.1

$$
a \hookrightarrow(a \hookrightarrow b)=\sim a \vee(a \hookrightarrow b) \vee(\nabla \sim a \wedge \nabla(a \hookrightarrow b))
$$

and using again Lemma 1.5.1,

$$
\begin{aligned}
& a \longmapsto(a \longmapsto b)= \\
& \sim a \vee \sim a \vee b \vee(\nabla \sim a \wedge \nabla b) \vee(\nabla \sim a \wedge(\nabla \sim a \vee \nabla b \vee(\nabla \sim a \wedge \nabla b)))= \\
& \sim a \vee b \vee(\nabla \sim a \wedge \nabla b) \vee \nabla \sim a=\sim a \vee b \vee \nabla \sim a=\nabla \sim a \vee b=a \rightarrow b .
\end{aligned}
$$

This result allows us to go from the contraposed implication to the weak implication.

We shall present some properties of the weak and contraposed implications that we will use later.

Lemma 1.5.7. The operation $\rightarrow$ has the following properties:
ID1) If $a \leq b$ then $a \rightarrow b=1$,
ID2) $a \rightarrow 1=1$,
ID3) $a \rightarrow a=1$,
ID4) $1 \rightarrow a=a$,
ID5) $a \rightarrow(b \rightarrow a)=1$,
ID6) If $a \leq b$ then $c \rightarrow a \leq c \rightarrow b$,
ID7) If $a \leq b$ then $b \rightarrow c \leq a \rightarrow c$,
ID8) $a \rightarrow(a \wedge b)=a \rightarrow b$,
ID9) $a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$,
ID10) $(a \wedge b) \rightarrow c=a \rightarrow(b \rightarrow c)$,
ID11) $a \rightarrow(b \rightarrow c)=b \rightarrow(a \rightarrow c)$,
ID12) $(a \vee b) \rightarrow c=(a \rightarrow c) \wedge(b \rightarrow c)$,
ID13) $a \rightarrow \Delta a=1$,
ID14) $a \wedge(a \rightarrow b)=a \wedge(\sim a \vee b)$,
ID15) $(a \rightarrow(b \rightarrow c)) \rightarrow((a \rightarrow b) \rightarrow(a \rightarrow c))=1$,
ID16) $a \rightarrow(b \vee c)=(a \rightarrow b) \vee(a \rightarrow c)$.
Proof. ID1) If $a \leq b$ then by L13), $1=\nabla \sim a \vee a \leq \nabla \sim a \vee b=a \rightarrow b$.
ID2) Follows from $a \leq 1$ and ID1).
ID3) Follows immediately from $a \leq a$ and ID1).
ID4) $1 \rightarrow a=\nabla \sim 1 \vee a=0 \vee a=a$.
ID5) Since $a \leq \nabla \sim b \vee a=b \rightarrow a$, then by ID1), ID5) obtains.
ID6) If $a \leq b$ then $c \rightarrow a=\nabla \sim c \vee a \leq \nabla \sim c \vee b=c \rightarrow b$.
ID7) If $a \leq b$ then $\sim b \leq \sim a$ and therefore $\nabla \sim b \vee c \leq \nabla \sim a \vee c$, this is $b \rightarrow c \leq a \rightarrow c$.
ID8) $a \rightarrow(a \wedge b)=\nabla \sim a \vee(a \wedge b)=(\nabla \sim a \vee a) \wedge(\nabla \sim a \vee b)=1 \wedge(a \rightarrow$ b) $=a \rightarrow b$.

ID9) $a \rightarrow(b \wedge c)=\nabla \sim a \vee(b \wedge c)=(\nabla \sim a \vee b) \wedge(\nabla \sim a \vee c)=(a \rightarrow$ b) $\wedge(a \rightarrow c)$.

ID10) $(a \wedge b) \rightarrow c=\nabla \sim(a \wedge b) \vee c=\nabla \sim a \vee \nabla \sim b \vee c=\nabla \sim a \vee(b \rightarrow c)=$ $a \rightarrow(b \rightarrow c)$.
ID11) $a \rightarrow(b \rightarrow c)=($ by ID10 $)=(a \wedge b) \rightarrow c=(b \wedge a) \rightarrow c=($ by ID10 $)=$ $b \rightarrow(a \rightarrow c)$.
ID12) $(a \vee b) \rightarrow c=\nabla \sim(a \vee b) \vee c=(\nabla \sim a \wedge \nabla \sim b) \vee c=(\nabla \sim a \vee c) \wedge(\nabla \sim$ $b \vee c)=(a \rightarrow c) \wedge(b \rightarrow c)$.
ID13) $a \rightarrow \Delta a=\nabla \sim a \vee \Delta a=\sim \Delta a \vee \Delta a=1$.
ID14) $a \wedge(a \rightarrow b)=a \wedge(\nabla \sim a \vee b)=(a \wedge \nabla \sim a) \vee(a \wedge b)=(a \wedge \sim a) \vee(a \wedge b)=$ $a \wedge(\sim a \vee b)$.
ID15) $(a \rightarrow(b \rightarrow c)) \rightarrow((a \rightarrow b) \rightarrow(a \rightarrow c))=$

$$
\begin{aligned}
& \nabla \sim(a \rightarrow(b \rightarrow c)) \vee((a \rightarrow b) \rightarrow(a \rightarrow c))= \\
& \nabla \sim(\nabla \sim a \vee(b \rightarrow c)) \vee(\nabla \sim(a \rightarrow b) \vee(a \rightarrow c))= \\
& (\Delta a \wedge \nabla \sim(\nabla \sim b \vee c)) \vee(\Delta a \wedge \nabla \sim b) \vee \nabla \sim a \vee c=
\end{aligned}
$$

$(\Delta a \wedge \Delta b \wedge \nabla \sim c) \vee(\Delta a \wedge \nabla \sim b) \vee \nabla \sim a \vee c=$ $(\Delta a \wedge((\Delta b \wedge \nabla \sim c) \vee \nabla \sim b)) \vee \nabla \sim a \vee c=$
$(\Delta a \wedge((\Delta b \vee \nabla \sim b) \wedge(\nabla \sim c \vee \nabla \sim b)) \vee \nabla \sim a \vee c=$
$(\Delta a \wedge(\nabla \sim c \vee \nabla \sim b)) \vee \nabla \sim a \vee c=$
$(\Delta a \vee \nabla \sim a \vee c) \wedge(\nabla \sim c \vee \nabla \sim b \vee \nabla \sim a \vee c)=1 \wedge 1=1$.
ID16) $a \rightarrow(b \vee c)=\nabla \sim a \vee b \vee c=\nabla \sim a \vee b \vee \nabla \sim a \vee c=(a \rightarrow b) \vee(a \rightarrow c)$.

Lemma 1.5.8. The operation $\mapsto$ has the following properties:
IC1) If $a \leq b$ then $a \mapsto b=1$,
IC2) $a \mapsto 1=1$,
IC3) $a \mapsto a=1$,
IC4) $1 \mapsto a=a$,
IC5) $a \longmapsto(b \mapsto a)=1$,
IC6) If $a \leq b$ then $c \rightharpoondown a \leq c \rightharpoondown b$,
IC7) If $a \leq b$ then $b \mapsto c \leq a \longmapsto c$,
IC8) $a \longmapsto(a \wedge b)=a \mapsto b$,
IC9) $a \mapsto(b \wedge c)=(a \hookrightarrow b) \wedge(a \mapsto c)$,
IC10) $(a \hookrightarrow b) \hookrightarrow((b \hookrightarrow c) \mapsto(a \hookrightarrow c))=1$,
IC11) $\Delta(a \multimap b) \multimap(\nabla a \hookrightarrow \nabla b)=1$,
IC12) If $a \hookrightarrow b=1$ then $a \leq b$,
IC13) $a=b$ if and only if $a \mapsto b=1$ and $b \mapsto a=1$,
IC14) $a \longmapsto c \leq(a \vee b) \mapsto(c \vee b)$,
IC15) $\sim a \mapsto a=\nabla a$,
IC16) $\sim a \mapsto \sim b=b \mapsto a$.
Proof. IC1) If (1) $a \leq b$ then (2) $\sim b \leq \sim a$. From (1) it follows by ID1) that $a \rightarrow b=1$ and from (2) it follows by ID1) that $\sim b \rightarrow \sim a=1$. Then:

$$
a \hookrightarrow b=(a \rightarrow b) \wedge(\sim b \rightarrow \sim a)=1 \wedge 1=1 .
$$

IC2) Is an immediate consequence of $a \leq 1$ and IC1).
IC3) Is an immediate consequence of $a \leq a$ and IC1).
IC4) $1 \mapsto a=(1 \rightarrow a) \wedge(\sim a \rightarrow \sim 1)=($ by ID4 $)=a \wedge(\nabla a \vee 0)=a \wedge \nabla a=a$.
IC5) $b \mapsto a=(\nabla \sim b \vee a) \wedge(\nabla a \vee \sim b) \geq a \wedge \nabla a=a$, then by IC1, IC5 follows.
IC6) If (1) $a \leq b$ then (2) $\sim b \leq \sim a$. From (1) it follows by ID6 that (3) $c \rightarrow$ $a \leq c \rightarrow b$ and from (2) it follows by ID7 that (4) $\sim a \rightarrow \sim c \leq \sim b \rightarrow \sim c$. From (3) and (4):

$$
(c \rightarrow a) \wedge(\sim a \rightarrow \sim c) \leq(c \rightarrow b) \wedge(\sim b \rightarrow \sim c)
$$

this is $c \longmapsto a \leq c \rightharpoondown b$.
IC7) If (1) $a \leq b$ then (2) $\sim b \leq \sim a$. From (1) it follows by ID7) that (3) $b \rightarrow$ $c \leq a \rightarrow c$ and from (2) it follows by ID6 that (4) $\sim c \rightarrow \sim b \leq \sim c \rightarrow \sim a$. From (3) and (4):

$$
(b \rightarrow c) \wedge(\sim c \rightarrow \sim b) \leq(a \rightarrow c) \wedge(\sim c \rightarrow \sim a)
$$

this is $b \mapsto c \leq a \mapsto c$.

IC8) $a \mapsto(a \wedge b)=(a \rightarrow(a \wedge b)) \wedge(\sim(a \wedge b) \rightarrow \sim a)=($ by ID8 $))=$

$$
\begin{aligned}
& (a \rightarrow b) \wedge((\sim a \vee \sim b) \rightarrow \sim a)=(\text { by ID12 })= \\
& (a \rightarrow b) \wedge(\sim a \rightarrow \sim a) \wedge(\sim b \rightarrow a)=(\text { by ID3 }))= \\
& (a \rightarrow b) \wedge 1 \wedge(\sim b \rightarrow \sim a)=(a \rightarrow b) \wedge(\sim b \rightarrow \sim a)=a \mapsto b
\end{aligned}
$$

IC9) $a \mapsto(b \wedge c)=(a \rightarrow(b \wedge c)) \wedge(\sim(b \wedge c) \rightarrow \sim a)=$
$(\nabla \sim a \vee(b \wedge c)) \wedge((\nabla b \wedge \nabla c) \vee \sim a)=$ $(\nabla \sim a \vee b) \wedge(\nabla \sim a \vee c) \wedge(\nabla b \vee \sim a) \wedge(\nabla c \vee \sim a)=$ $(\nabla \sim a \vee b) \wedge(\nabla b \vee \sim a) \wedge(\nabla \sim a \vee c) \wedge(\nabla c \vee \sim a)=$ $(a \longmapsto b) \wedge(a \longmapsto c)$.
IC10) Since $x \hookrightarrow y=\sim x \vee y \vee(\nabla \sim x \wedge \nabla y)$ then:
(1) $\nabla(x \mapsto y)=\nabla \sim x \vee \nabla y \vee(\nabla \sim x \wedge \nabla y)=\nabla \sim x \vee \nabla y$, and
(2) $\Delta(x \mapsto y)=\Delta \sim x \vee \Delta y \vee(\nabla \sim x \wedge \nabla y)=$ $(\nabla \sim x \vee \Delta y) \wedge(\Delta \sim x \vee \nabla y)$.
Since

$$
\sim(x \mapsto y)=x \wedge \sim y \wedge(\Delta x \vee \Delta \sim y)
$$

then
(3) $\nabla \sim(x \mapsto y)=\nabla x \wedge \nabla \sim y \wedge(\Delta x \vee \Delta \sim y)=$

$$
(\Delta x \wedge \nabla \sim y) \vee(\nabla x \wedge \Delta \sim y)
$$

and
(4) $\Delta \sim(x \mapsto y)=\Delta x \wedge \Delta \sim y \wedge(\Delta x \vee \Delta \sim y)=\Delta x \wedge \Delta \sim y$.

Let $\alpha=a \longmapsto b$ and $\beta=(b \mapsto c) \longmapsto(a \mapsto c)$, then by (1)

$$
\text { (5) } \nabla \beta=\nabla \sim(b \hookrightarrow c) \vee \nabla(a \multimap c)
$$

So by (3) and (1)
$\nabla \beta=(\nabla b \wedge \nabla \sim c \wedge(\Delta b \vee \Delta \sim c)) \vee \nabla \sim a \vee \nabla c=$
$(\nabla \sim a \vee \nabla c \vee \nabla b) \wedge(\nabla \sim a \vee \nabla c \vee \nabla \sim c) \wedge(\nabla \sim a \vee \nabla c \vee \Delta b \vee \Delta \sim c)=$
$(\nabla \sim a \vee \nabla c \vee \nabla b) \wedge 1 \wedge 1=\nabla \sim a \vee \nabla c \vee \nabla b$.
By (1) $\nabla \alpha=\nabla(a \mapsto b)=\nabla \sim a \vee \nabla b$, then

$$
\text { (6) } \nabla \alpha \leq \nabla \beta \text {. }
$$

By (2)

$$
\Delta \beta=(\nabla \sim(b \hookrightarrow c) \vee \Delta(a \multimap c)) \wedge(\Delta \sim(b \hookrightarrow c) \vee \nabla(a \multimap c))
$$

Let $\gamma=\nabla \sim(b \rightharpoondown c) \vee \Delta(a \longmapsto c)=$ and $\delta=\Delta \sim(b \rightharpoondown c) \vee \nabla(a \mapsto c)$, so that $\Delta \beta=\gamma \wedge \delta$. By (3) and (1),
$\gamma=(\Delta b \wedge \nabla \sim c) \vee(\nabla b \wedge \Delta \sim c) \vee \Delta \sim a \vee \Delta c \vee(\nabla \sim a \wedge \nabla c)$.
By (4) and (1),
$\delta=\Delta \sim(b \mapsto c) \vee \nabla(a \mapsto c)=(\Delta b \wedge \Delta \sim c) \vee \nabla \sim a \vee \nabla c=$
$(\Delta b \vee \nabla \sim a \vee \nabla c) \wedge(\Delta \sim c \vee \nabla \sim a \vee \nabla c)=\nabla \sim a \vee \Delta b \vee \nabla c$.

By (2)

$$
\begin{gathered}
\Delta \alpha=\Delta(a \mapsto b)=(\nabla \sim a \vee \Delta b) \wedge(\Delta \sim a \vee \nabla b) \leq \nabla \sim a \vee \Delta b \leq \\
\nabla \sim a \vee \Delta b \vee \nabla c=\delta,
\end{gathered}
$$

and also by Lemma 1.5.1

$$
\begin{gathered}
\Delta \alpha=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b)= \\
\Delta \sim a \vee(\Delta b \wedge(\nabla \sim c \vee \Delta c)) \vee(\nabla \sim a \wedge \nabla b)= \\
\Delta \sim a \vee(\Delta b \wedge \nabla \sim c) \vee(\Delta b \wedge \Delta c) \vee(\nabla \sim a \wedge \nabla b) \leq \\
\Delta \sim a \vee(\Delta b \wedge \nabla \sim c) \vee(\Delta b \wedge \Delta c) \vee \Delta c \vee(\nabla \sim a \wedge \nabla b)= \\
\Delta \sim a \vee(\Delta b \wedge \nabla \sim c) \vee \Delta c \vee(\nabla \sim a \wedge \nabla b)= \\
\Delta \sim a \vee(\Delta b \wedge \nabla \sim c) \vee \Delta c \vee(\nabla \sim a \wedge \nabla b \wedge \nabla c) \vee(\nabla \sim a \wedge \nabla b \wedge \Delta \sim c) \leq \\
\Delta \sim a \vee(\Delta b \wedge \nabla \sim c) \vee \Delta c \vee(\nabla \sim a \wedge \nabla c) \vee(\nabla b \wedge \Delta \sim c)=\gamma, \\
\text { so } \\
\text { (7) } \Delta \alpha \leq \gamma \wedge \delta=\Delta \beta .
\end{gathered}
$$

From (6) and (7) it follows by Moisil's determination principle that $\alpha \wedge \beta=\alpha$ this is $\alpha \leq \beta$, so by IC2) we have that $\alpha \hookrightarrow \beta=1$.
IC11) $\Delta(a \hookrightarrow b)=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b)$, so
(1) $\sim \Delta(a \hookrightarrow b)=\nabla a \wedge \nabla \sim b \wedge(\Delta a \vee \Delta \sim b)$. We also have
(2) $\nabla a \hookrightarrow \nabla b=\Delta \sim a \vee \nabla b \vee(\Delta \sim a \wedge \nabla b)=\Delta \sim a \vee \nabla b$.

Therefore (3) $\nabla \sim \Delta(a \longmapsto b)=\sim \Delta(a \mapsto b)$ and
(4) $\nabla(\nabla a \multimap \nabla b)=\nabla a \mapsto \nabla b$. Then by (1), (2), (3) and (4) we have:

$$
\begin{aligned}
& \Delta(a \mapsto b) \hookrightarrow(\nabla a \mapsto \nabla b)= \\
& \sim \Delta(a \mapsto b) \vee(\nabla a \mapsto \nabla b) \vee(\nabla \sim \Delta(a \mapsto b) \wedge \nabla(\nabla a \mapsto \nabla b))= \\
& \sim \Delta(a \mapsto b) \vee(\nabla a \mapsto \nabla b) \vee(\sim \Delta(a \longmapsto b) \wedge(\nabla a \mapsto \nabla b))= \\
& \sim \Delta(a \mapsto b) \vee(\nabla a \mapsto \nabla b)= \\
& (\nabla a \wedge \nabla \sim b \wedge(\Delta a \vee \Delta \sim b)) \vee(\Delta \sim a \vee \nabla b)= \\
& (\nabla a \wedge \nabla \sim b \wedge \Delta a) \vee(\nabla a \wedge \nabla \sim b \wedge \Delta \sim b) \vee \Delta \sim a \vee \nabla b= \\
& (\nabla \sim b \wedge \Delta a) \vee(\nabla a \wedge \Delta \sim b) \vee \Delta \sim a \vee \nabla b= \\
& (\nabla \sim b \wedge \Delta a) \vee(\nabla a \wedge \Delta \sim b) \vee \sim(\nabla a \wedge \Delta \sim b)= \\
& (\nabla \sim b \wedge \Delta a) \vee 1=1
\end{aligned}
$$

IC12) If $a \hookrightarrow b=1$, then by Lemma 1.5.4, $a \vee b=(a \mapsto b) \mapsto b=1 \hookrightarrow b=$ $($ by IC4) $)=b$, so $a \leq b$.
IC13) If $a=b$ then by IC3) we have that $a \hookrightarrow b=a \mapsto a=1$ and $b \mapsto a=$ $b \mapsto b=1$. Assume that $a \hookrightarrow b=1$ and $b \mapsto a=1$, so by IC12) $a \leq b$ and $b \leq a$, therefore $a=b$.
IC14) $(a \vee b) \hookrightarrow(c \vee b)=\sim(a \vee b) \vee c \vee b \vee(\nabla \sim(a \vee b) \wedge \nabla(c \vee b))=$
$\sim(a \vee b) \vee c \vee b \vee(\nabla \sim a \wedge \nabla \sim b \wedge \nabla(c \vee b))=$
$\sim(a \vee b) \vee c \vee b \vee(\nabla \sim a \wedge \nabla \sim b \wedge \nabla c) \vee(\nabla \sim a \wedge \nabla \sim b \wedge \nabla b)=$
$\sim(a \vee b) \vee c \vee((\nabla \sim a \wedge \nabla c) \vee b) \wedge(b \vee \nabla \sim b)) \vee((\nabla \sim a \wedge \nabla b) \vee b)) \wedge(b \vee \nabla \sim b))=$
$\sim(a \vee b) \vee c \vee(\nabla \sim a \wedge \nabla c) \vee(\nabla \sim a \wedge \nabla b) \vee b=$
$(\sim a \wedge \sim b) \vee(\nabla \sim a \wedge \nabla b) \vee c \vee b \vee(\nabla \sim a \wedge \nabla c)=$
$((\sim a \vee \nabla \sim a) \wedge(\sim a \vee \nabla b) \wedge(\sim b \vee \nabla \sim a) \wedge(\sim b \vee \nabla b)) \vee c \vee b \vee(\nabla \sim a \wedge \nabla c)=$
$(\nabla \sim a \wedge(\sim a \vee \nabla b) \wedge(\sim b \vee \nabla \sim a)) \vee c \vee b \vee(\nabla \sim a \wedge \nabla c)=$
$(\nabla \sim a \wedge(\sim a \vee \nabla b)) \vee c \vee b \vee(\nabla \sim a \wedge \nabla c)=$

$$
\begin{aligned}
& \sim a \vee(\nabla \sim a \wedge \nabla b) \vee c \vee b \vee(\nabla \sim a \wedge \nabla c) \geq \\
& \sim a \vee c \vee(\nabla \sim a \wedge \nabla c)=a \mapsto c . \\
\text { IC15 }) & \sim a \mapsto a=a \vee a \vee(\nabla a \wedge \nabla a)=a \vee \nabla a=\nabla a . \\
\text { IC16 }) & \sim a \mapsto \sim b=(\sim a \rightarrow \sim b) \wedge(b \rightarrow a)=b \mapsto a .
\end{aligned}
$$

Note that from the formulas:

- $a \vee b=(a \longmapsto b) \rightharpoondown b$,
- $a \wedge b=\sim(\sim a \vee \sim b)$,
- $\nabla a=\sim a \mapsto a$,
- $a \longmapsto a=1$,
it follows that in a Lukasiewicz algebra, from the operations $\rightarrow$ and $\sim$, the constant 1 , and the operations $\vee, \wedge$, and $\nabla$ can be determined, so it is possible to define a Łukasiewicz algebra as a system formed by a non-empty set $A$, a unary operation $\sim$ and a binary operation $\rightharpoondown$, as long as these two connectives fulfill certain conditions. At the moment this course was taught, this was an open problem.
- In 1984 A. Figallo and J. Tolosa [19] characterized the Łukasiewicz algebras as a system $(L, 1, \rightarrow, \wedge, \neg)$, using Moisil's representation Theorem (see section 3.5).
- Also in 1984 M. Abad and A. Figallo [1], gave a different proof of the same result.
- In 1992, A. Figallo and A. Ziliani charactered Łukasiewicz's three valued propositional calculus in terms of $\rightarrow, \wedge, \neg$, modus ponens and the substitution law. This was published in 1992, [20].
These three problems were posed by Professor A. Monteiro during the courses and seminars about Łukasiewicz algebras.
- In 1986 D. Díaz and A. Figallo [17] characterized Łukasiewicz algebras as systems $(L, 1,\ulcorner, \longmapsto)$.


### 1.6. Heyting algebras

Definition 1.6.1. A Heyting algebra is a lattice $H$ with bottom element 0 and top element 1, in which for each pair $(a, b)$ of elements in $H$ there exists an element $c \in H$ such that:

HA1) $a \wedge c \leq b$,
HA2) If $a \wedge x \leq b$ then $x \leq c$.
See, for instance, [46] and [73].
We shall denote the element $c$ with $c=a \Rightarrow b$ and say that $c$ is the intuitionistic implication of $a$ and $b$.

In 1963 Gr. Moisil [29] proved the following result:
Theorem 1.6.2. Every Łukasiewicz algebra is a Heyting algebra.

Proof. This proof is due to A. Monteiro. Moisil defines the intuitionistic implication by

$$
a \Rightarrow b=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b) \vee(\Delta a \wedge b \wedge \sim b)
$$

But we saw in Lemma 1.5.2 that

$$
a \Rightarrow b=\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b)
$$

HA1) $a \wedge(a \Rightarrow b) \leq b$.
Indeed,

$$
\begin{gathered}
a \wedge(a \Rightarrow b)=a \wedge(\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b))= \\
(a \wedge \Delta \sim a) \vee(a \wedge b) \vee(a \wedge \nabla \sim a \wedge \nabla b)
\end{gathered}
$$

and since $a \wedge \Delta \sim a=0$ we have that

$$
\text { (1) } a \wedge(a \Rightarrow b)=(a \wedge b) \vee(a \wedge \nabla \sim a \wedge \nabla b) \text {. }
$$

By Moisil's determination principle, to prove HA1) is equivalent to prove that (2) $\nabla(a \wedge(a \Rightarrow b)) \leq \nabla b$ and (3) $\Delta(a \wedge(a \Rightarrow b)) \leq \Delta b$.

From (1) it follows that

$$
\begin{aligned}
& \nabla(a \wedge(a \Rightarrow b))=\nabla((a \wedge b) \vee(a \wedge \nabla \sim a \wedge \nabla b))= \\
& (\nabla a \wedge \nabla b) \vee(\nabla a \wedge \nabla \sim a \wedge \nabla b)=\nabla a \wedge \nabla b \leq \nabla b
\end{aligned}
$$

Also from (1) we deduce

$$
\begin{aligned}
& \Delta(a \wedge(a \Rightarrow b))=\Delta((a \wedge b) \vee(a \wedge \nabla \sim a \wedge \nabla b))= \\
& (\Delta a \wedge \Delta b) \vee(\Delta a \wedge \nabla \sim a \wedge \nabla b)=\Delta a \wedge \Delta b \leq \Delta b
\end{aligned}
$$

Let us prove now that:
HA2) If (4) $a \wedge x \leq b$ then (5) $x \leq a \Rightarrow b$.
It follows from (4) that

$$
\text { (6) } \nabla a \wedge \nabla x=\nabla(a \wedge x) \leq \nabla b \text {, }
$$

and
(7) $\Delta a \wedge \Delta x=\Delta(a \wedge x) \leq \Delta b$
and to prove (5) is equivalent, by Moisil's determination principle, to prove that

$$
\text { (8) } \nabla x \leq \nabla(a \Rightarrow b)
$$

and
(9) $\Delta x \leq \Delta(a \Rightarrow b)$.

But

$$
\begin{aligned}
& \nabla(a \Rightarrow b)=\nabla(\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b))= \\
& \Delta \sim a \vee \nabla b \vee(\nabla \sim a \wedge \nabla b)=\Delta \sim a \vee \nabla b
\end{aligned}
$$

and

$$
\begin{gathered}
\Delta(a \Rightarrow b)=\Delta(\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b))=\Delta \sim a \vee \Delta b \vee(\nabla \sim a \wedge \nabla b))= \\
(\Delta \sim a \vee \Delta b \vee \nabla \sim a) \wedge(\Delta \sim a \vee \Delta b \vee \nabla b)= \\
(\nabla \sim a \vee \Delta b) \wedge(\Delta \sim a \vee \nabla b) .
\end{gathered}
$$

Therefore conditions (8) and (9) can be written as

$$
\text { (10) } \nabla x \leq \Delta \sim a \vee \nabla b \text {, }
$$

$$
\text { (11) } \Delta x \leq(\nabla \sim a \vee \Delta b) \wedge(\Delta \sim a \vee \nabla b)
$$

To prove this last condition is equivalent to proving

$$
\text { (12) } \Delta x \leq \nabla \sim a \vee \Delta b \text {, }
$$

and
(13) $\Delta x \leq \Delta \sim a \vee \nabla b$.

We shall prove that (10), (12), and (13) are deduced from (6) and (7).
From (6) it follows that

$$
\sim \nabla a \vee(\nabla a \wedge \nabla x) \leq \sim \nabla a \vee \nabla b
$$

this is

$$
\sim \nabla a \vee \nabla x=(\sim \nabla a \vee \nabla a) \wedge(\sim \nabla a \vee \nabla x) \leq \sim \nabla a \vee \nabla b=\Delta \sim a \vee \nabla b
$$

and therefore

$$
\text { (14) } \sim \nabla a \vee \nabla x \leq \Delta \sim a \vee \nabla b
$$

Then, since

$$
\text { (15) } \Delta x \leq \nabla x \leq \sim \nabla a \vee \nabla x
$$

from (14) and (15) it follows that
$\Delta x \leq \Delta \sim a \vee \nabla b$ and $\nabla x \leq \Delta \sim a \vee \nabla b$ which proves (13) and (10).
From (7) it follows that

$$
\sim \Delta a \vee(\Delta a \wedge \Delta x) \leq \sim \Delta a \vee \Delta b=\nabla \sim a \vee \Delta b
$$

then

$$
\Delta x \leq \sim \Delta a \vee \Delta x \leq \nabla \sim a \vee \Delta b
$$

which proves (12).
We saw in the previous section that the intuitionistic negation of an element $x$ of a Łukasiewicz algebra is

$$
\neg x=x \Rightarrow 0=\Delta \sim x=\sim \nabla x
$$

and therefore

$$
\neg \neg x=\sim \nabla(\neg x)=\sim \nabla(\sim \nabla x)=\Delta \nabla x=\nabla x .
$$

Therefore the operator $\nabla$ can be obtained from the intuitionistic implication. In every Łukasiewicz algebra $\nabla(x \wedge y)=\nabla x \wedge \nabla y$ holds so

$$
\begin{equation*}
\neg \neg(x \wedge y)=\neg \neg x \wedge \neg \neg y \tag{1.6.1}
\end{equation*}
$$

which is a valid formula in every Heyting algebra.
Since in every Lukasiewicz algebra $\nabla(x \vee y)=\nabla x \vee \nabla y$ holds, then

$$
\begin{equation*}
\neg \neg(x \vee y)=\neg \neg x \vee \neg \neg y \tag{1.6.2}
\end{equation*}
$$

but this formula is not valid in every Heyting algebra. Indeed:

Example 1.6.3. Let $H$ be the Heyting algebra $H$ indicated in the next figure, [46]. Then $\neg \neg(a \vee b)=\neg \neg d=\neg 0=1 y \neg \neg a \vee \neg \neg b=\neg b \vee \neg c=c \vee b=f$, which proves that (1.6.2) does not hold in every Heyting algebra.


| $\Rightarrow$ | 0 | $a$ | $b$ | $c$ | $d$ | $f$ | $g$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $a$ | $b$ | 1 | $b$ | 1 | 1 | 1 | 1 | 1 |
| $b$ | $c$ | $c$ | 1 | $c$ | 1 | 1 | 1 | 1 |
| $c$ | $b$ | $g$ | $b$ | 1 | $g$ | 1 | $g$ | 1 |
| $d$ | 0 | $c$ | $b$ | $c$ | 1 | 1 | 1 | 1 |
| $f$ | 0 | $a$ | $b$ | $c$ | $g$ | 1 | $g$ | 1 |
| $g$ | 0 | $c$ | $b$ | $c$ | $f$ | $f$ | 1 | 1 |
| 1 | 0 | $a$ | $b$ | $c$ | $d$ | $f$ | $g$ | 1 |

Therefore Łukasiewicz algebras are particular Heyting algebras.
Definition 1.6.4. A Heyting algebra is said to be three valued if

$$
\text { T) } \quad(((a \Rightarrow c) \Rightarrow b) \Rightarrow(((b \Rightarrow a) \Rightarrow b) \Rightarrow b)=1
$$

holds.
Lemma 1.6.5. In a Heyting algebra the condition T) is equivalent to each of the following conditions: (L. Monteiro, [55], [60])

T1) $(\neg a \Rightarrow b) \Rightarrow(((b \Rightarrow a) \Rightarrow b) \Rightarrow b)=1$,
T2) $((b \Rightarrow a) \Rightarrow b) \Rightarrow((\neg a \Rightarrow b) \Rightarrow b)=1$,
T3) $b=(\neg a \Rightarrow b) \wedge((b \Rightarrow a) \Rightarrow b)$,
T4) $b=((a \Rightarrow c) \Rightarrow b) \wedge((b \Rightarrow a) \Rightarrow b)$.
The next result was obtained by L. Monteiro in 1963, and presented that same year in the seminar conducted by A. Monteiro [37], but only published in 1970, [59].

Theorem 1.6.6. Every Eukasiewicz algebra is a three valued Heyting algebra.
Proof. Since $\neg a \Rightarrow b=\Delta \sim a \Rightarrow b=\nabla a \vee b \vee(\nabla a \wedge \nabla b)=\nabla a \vee b$ and

$$
(b \Rightarrow a) \Rightarrow b=(\Delta \sim b \vee a \vee(\nabla \sim b \wedge \nabla a)) \Rightarrow b=
$$

$\Delta \sim(\Delta \sim b \vee a \vee(\nabla \sim b \wedge \nabla a)) \vee b \vee(\nabla \sim(\Delta \sim b \vee a \vee(\nabla \sim b \wedge \nabla a)) \wedge \nabla b)=$
$(\nabla b \wedge \Delta \sim a \wedge(\Delta b \vee \Delta \sim a)) \vee b \vee(\nabla b \wedge \nabla \sim a \wedge(\Delta b \vee \Delta \sim a) \wedge \nabla b)=$
$(\nabla b \wedge \Delta \sim a) \vee b \vee(\nabla b \wedge \nabla \sim a \wedge(\Delta b \vee \Delta \sim a))=$
$(\nabla b \wedge \Delta \sim a) \vee b \vee(\nabla b \wedge \nabla \sim a \wedge \Delta b) \vee(\nabla b \wedge \nabla \sim a \wedge \Delta \sim a)=$
$(\nabla b \wedge \Delta \sim a) \vee b \vee(\Delta b \wedge \nabla \sim a) \vee(\nabla b \wedge \Delta \sim a)=$

$$
(\nabla b \wedge \Delta \sim a) \vee b \vee(\Delta b \wedge \nabla \sim a)=
$$

and since $\Delta b \wedge \nabla \sim a \leq \Delta b \leq b$ we have that

$$
(b \Rightarrow a) \Rightarrow b=(\nabla b \wedge \Delta \sim a) \vee b
$$

then

$$
\begin{aligned}
& (\neg a \Rightarrow b) \wedge((b \Rightarrow a) \Rightarrow b)=(\nabla a \vee b) \wedge((\nabla b \wedge \Delta \sim a) \vee b)= \\
& (\nabla a \wedge \nabla b \wedge \Delta \sim a) \vee b=(\nabla a \wedge \sim \nabla a \wedge \nabla b) \vee b=0 \vee b=b,
\end{aligned}
$$

which proves that T 3 ) holds.
Consider the Łukasiewicz algebra from Example 1.3.1, namely:


| $x$ | $\sim x$ | $\nabla x$ |
| :---: | :---: | :---: |
| 0 | 1 | 0 |
| $a$ | $d$ | $a$ |
| $b$ | $e$ | 1 |
| $d$ | $a$ | $d$ |
| $e$ | $b$ | $d$ |
| 1 | 0 | 1 |


| $\Rightarrow$ | 0 | $a$ | $b$ | $d$ | $e$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| $a$ | $d$ | 1 | 1 | $d$ | $d$ | 1 |
| $b$ | 0 | $a$ | 1 | $d$ | $d$ | 1 |
| $d$ | $a$ | $a$ | $b$ | 1 | $b$ | 1 |
| $e$ | $a$ | $a$ | 1 | 1 | 1 | 1 |
| 1 | 0 | $a$ | $b$ | $d$ | $e$ | 1 |

The subset $L^{\prime}=\{0, b, 1\}$ is closed with respect to the operations $\wedge, \vee, \Rightarrow$ , $\neg$, but not with respect to $\sim$, therefore in general, the operation $\sim$ cannot be expressed in terms of the operations $\wedge, \vee, \Rightarrow$, and $\neg$. This example was pointed out by A. Monteiro in his 1963 seminar. During the same, he posed the problem of characterizing the Łukasiewicz algebras by means of the connectives $\wedge, \vee, \Rightarrow, \sim$. This problem was solved that same year by L. Monteiro, who used the theory of prime filters. Then Professor A. Monteiro (see [45]), posed the problem of obtaining the same result in a purely algebraic way and L. Monteiro obtained the following result in 1969, [59].

Theorem 1.6.7. If in a system $(L, 1, \sim, \vee, \wedge, \Rightarrow)$ verifying the axioms:

1) $x \Rightarrow x=1$,
2) $(x \Rightarrow y) \wedge y=y$,
3) $x \Rightarrow(y \wedge z)=(x \Rightarrow y) \wedge(x \Rightarrow z)$,
4) $x \wedge(x \Rightarrow y)=x \wedge y$,
5) $(x \vee y) \Rightarrow z=(x \Rightarrow z) \wedge(y \Rightarrow z)$,
6) $(((x \Rightarrow z) \Rightarrow y) \Rightarrow(((y \Rightarrow x) \Rightarrow y) \Rightarrow y)=1$,
7) $\sim \sim x=x$,
8) $\sim(x \wedge y)=\sim x \vee \sim y$,
9) $(x \wedge \sim x) \wedge(y \vee \sim y)=x \wedge \sim x$,
we define D) $\nabla x=\sim x \Rightarrow x$, then the system $(L, 1, \sim, \nabla, \vee, \wedge)$ is a Eukasiewicz algebra and furthermore

$$
a \Rightarrow b=\Delta \sim a \vee b \vee(\nabla \sim a \wedge \nabla b)
$$

Since all Łukasiewicz algebras are Heyting algebras, (see for instance H. Rasiowa and R. Sikorski [73], p. 55), we can claim that

Theorem 1.6.8. If in a Eukasiewicz algebra $L$ there exists $\bigvee_{i \in I} y_{i}$, then there exists $\bigvee_{i \in I}\left(x \wedge y_{i}\right)$ and
(D) $x \wedge \bigvee_{i \in I} y_{i}=\bigvee_{i \in I}\left(x \wedge y_{i}\right)$.

We shall present a proof of (D) that does not require knowledge of the theory of Heyting algebras was indicated by L. Monteiro, [62].

Let $y=\bigvee_{i \in I} y_{i}$, then from $y_{i} \leq y$ for all $i \in I$ it follows that

$$
\text { S1) } \quad x \wedge y_{i} \leq x \wedge y \text { for all } i \in I
$$

Let us show that:
S2) If $t$ verifies (1) $x \wedge y_{i} \leq t$ for all $i \in I$, then $x \wedge y \leq t$.
For this will be enough, using Moisil's determination principle, that

$$
\Delta(x \wedge y) \leq \Delta t \quad \text { y } \quad \nabla(x \wedge y) \leq \nabla t
$$

this is that

$$
\text { (2) } \Delta x \wedge \Delta y \leq \Delta t
$$

and

$$
\text { (3) } \nabla x \wedge \nabla y \leq \nabla t
$$

From (1) it follows that $\nabla \sim x \vee y_{i}=\nabla \sim x \vee\left(x \wedge y_{i}\right) \leq \nabla \sim x \vee t$, for all $i \in I$. Then $y_{i} \leq \nabla \sim x \vee y_{i} \leq \nabla \sim x \vee t$ for all $i \in I$ and in consequence

$$
y=\bigvee_{i \in I} y_{i} \leq \nabla \sim x \vee t
$$

Therefore

$$
\Delta x \wedge y \leq \Delta x \wedge(\nabla \sim x \vee t)=\Delta x \wedge t \leq t
$$

then $\Delta x \wedge \Delta y=\Delta(\Delta x \wedge y) \leq \Delta t$, which proves (2).
From the assumption (1) it follows that

$$
\nabla x \wedge \nabla y_{i} \leq \nabla t, \text { for all } i \in I
$$

so

$$
\sim \nabla x \vee \nabla y_{i}=\sim \nabla x \vee\left(\nabla x \wedge \nabla y_{i}\right) \leq \sim \nabla x \vee \nabla t, \text { for all } i \in I
$$

and therefore

$$
y_{i} \leq \nabla y_{i} \leq \sim \nabla x \vee \nabla y_{i} \leq \sim \nabla x \vee \nabla t \text {, for all } i \in I
$$

so $y=\bigvee_{i \in I} y_{i} \leq \sim \nabla x \vee \nabla t$ and therefore $\nabla x \wedge y \leq \nabla x \wedge(\sim \nabla x \vee \nabla t)=\nabla x \wedge \nabla t \leq \nabla t$ thus $\nabla x \wedge \nabla y=\nabla(\nabla x \wedge y) \leq \nabla t$, which proves (3).

From S1) and S2) it follows:

$$
\bigvee_{i \in I}\left(x \wedge y_{i}\right)=x \wedge \bigvee_{i \in I} y_{i}
$$

### 1.7. Moisil's definition

As we mentioned before, the concept of Łukasiewicz algebra was introduced by Gr. Moisil in his 1940 [25], and 1941 [27] articles, and gave a simplified definition in 1960 [30] which we present next.

Definition 1.7.1. A three-valued Eukasiewicz algebra is a system ( $L, 1, \sim$ , $\nabla, \vee, \wedge$ ) composed by 1) a non-empty set $L$; 2) an element $1 \in L$; 3) two unary operations $\sim$ and $\nabla$ defined over $L$; 4) two binary operations $\vee$ and $\wedge$, defined over $L$ such that the following conditions are satisfied:
I) $(L, 0,1, \wedge, \vee)$ is a bounded distributive lattice, this is

M0) $0 \wedge x=0$, for all $x \in L$,
M1) $1 \vee x=1$, for all $x \in L$,
M2) $x \wedge(x \vee y)=x$, for all $x, y \in L$,
M3) $x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$, for all $x, y, z \in L$,
II) Furthermore

M4) $\sim(x \vee y)=\sim x \wedge \sim y$, for all $x, y \in L$,
M5) $\sim(x \wedge y)=\sim x \vee \sim y$, for all $x, y \in L$,
M6) $\sim \sim x=x$, for all $x \in L$,
M7) $\nabla(x \wedge y)=\nabla x \wedge \nabla y$, for all $x, y \in L$.
M8) $\nabla(x \vee y)=\nabla x \vee \nabla y$, for all $x, y \in L$.
M9) $x \wedge \nabla x=x$, for all $x \in L$.
M10) $\nabla \nabla x=\nabla x$, for all $x \in L$.
M11) $\sim \nabla \sim \nabla x=\nabla x$, for all $x \in L$.
M12) $\sim x \wedge x=\sim x \wedge \nabla x$, for all $x \in L$,
M13) $\sim \nabla \sim x \vee(\nabla x \wedge \nabla \sim x) \vee \sim \nabla x=1$, for all $x \in L$.
In section 1.1 we proved that if we adopt definition 1.1.1 then all the axioms from M0) to M13) are verified. To prove the equivalence of the two definitions, since axioms L1) to L5) and L7), L8) appear in Moisil's definition, it will be enough to show that axiom L6) is verified, this is that $\sim x \vee \nabla x=1$. From M4) if follows immediately that:

$$
\text { (1) If } x \leq y \text { then } \sim y \leq \sim x \text {. }
$$

Let us prove that

$$
\text { (2) } \sim \nabla \sim x \leq x .
$$

Indeed, by M9) we have that $y \leq \nabla y$ for all $y \in L$, then $\sim x \leq \nabla \sim x$ so by (1) and M6): $\sim \nabla \sim x \leq \sim \sim x=x$.

By (2) and M9) it follows that

$$
\text { (3) } \sim \nabla \sim x \leq x \leq \nabla x
$$

Considering (3), from M13) it follows that

$$
\nabla x \vee(\nabla x \wedge \nabla \sim x) \vee \sim \nabla x=1
$$

so
(4) $\nabla x \vee \sim \nabla x=1$.

From (2) and M13) we deduce

$$
x \vee(\nabla x \wedge \nabla \sim x) \vee \sim \nabla x=1
$$

this is

$$
(x \vee \sim \nabla x \vee \nabla x) \wedge(x \vee \sim \nabla x \vee \nabla \sim x)=1
$$

so by (4)
(5) $x \vee \sim \nabla x \vee \nabla \sim x=1$.

Replacing $x$ by $\sim x$ in (3) we have that $\sim \nabla x \leq \nabla \sim x$ and therefore we have finally that $\sim x \vee \nabla x=1$, which concludes the proof of the equivalence of the two definitions.

### 1.8. New examples

Let us recall the following definition: A pair $(B, \exists)$ formed by a boolean algebra $B$ and a unary operator $\exists$, called an existential quantifier, defined over $B$ is said to be a monadic boolean algebra P. R. Halmos [21, 22], A. and L. Monteiro, [50] if the following hold:

EQ0) $\exists 0=0$,
EQ1) $x \wedge \exists x=x$,
EQ2) $\exists(x \wedge \exists y)=\exists x \wedge \exists y$.
It is well known that in every monadic boolean algebra the following identities hold:

EQ3) $\exists 1=1$,
EQ4) $\exists \exists x=\exists x$,
EQ5) If $x \leq y$ then $\exists x \leq \exists y$.
The discrete existential quantifier on a boolean algebra is given by $\exists x=x$ for every $x \in B$. The simple existential quantifier is given by $\exists x=1$ for every $x \neq 0$ and $\exists 0=0$.

In a monadic boolean algebra we denominate universal quantifier the operator defined by $\forall x=-\exists-x$, where $-x$ is the boolean complement of $x$.

The problem is posed of determining whether there exist Łukasiewicz algebras whose elements are subsets of a given set.

Example 1.8.1. Let I be a non-empty set and $\varphi$ an involution on $I$, this is a function from $I$ to $I$ such that $\varphi(\varphi(x))=x$ for all $x \in I$. Clearly $\varphi$ is a bijection with $\varphi^{-1}=\varphi$. We know that $(\mathcal{P}(I), I, \complement, \cap, \cup)$ is a boolean algebra.

We define an operator $\boldsymbol{\nabla}$ over $\mathcal{P}(I)$ as follows:
St1) $\boldsymbol{\nabla} \emptyset=\emptyset$,
St2) If $i \in I$ then $\nabla\{i\}=\{i, \varphi(i)\}$,
St3) If $X \in \mathcal{P}(I), X \neq \emptyset$ then $\nabla X=\bigcup_{i \in X} \nabla\{i\}$.
Note that $\boldsymbol{\nabla}\{i\}=\nabla\{\varphi(i)\}$ and that if $X \in \mathcal{P}(I)$ then

$$
\nabla X=\bigcup_{i \in X}\{i, \varphi(i)\}=\bigcup_{i \in X}\{i\} \cup \bigcup_{i \in X}\{\varphi(i)\}=X \cup \varphi(X) .
$$

The operator $\nabla$ has the following properties:

St4) $\frac{X \subseteq \nabla X, \text { for all } X \in \mathcal{P}(I) \text {. }}{\nabla X=X \cup \varphi(X) \supseteq X .}$
St5) $\boldsymbol{\nabla}(X \cap \nabla Y)=\nabla X \cap \nabla Y$, for all $X, Y \in \mathcal{P}(I)$.

```
\(\nabla(X \cap \nabla Y)=(X \cap \boldsymbol{\nabla} Y) \cup \varphi(X \cap \nabla Y)=(X \cap \nabla Y) \cup \varphi(X \cap(Y \cup\)
\(\varphi(Y))=\)
    \((X \cap \nabla Y) \cup(\varphi(X) \cap(\varphi(Y) \cup Y))=(X \cap \nabla Y) \cup(\varphi(X) \cap \nabla Y)=\)
\((X \cup \varphi(X)) \cap \nabla Y=\)
    \(\nabla X \cap \nabla Y\).
```

From St1), St4) and St5) it follows that $(\mathcal{P}(I), \nabla)$ is a monadic boolean algebra.

For each $X \in \mathcal{P}(I)=2^{I}$ we put $\sim X=\complement \varphi(X)$. Since $\varphi$ is a bijection on $E$, then:

St6) $\varphi(\complement X)=\complement \varphi(X)$, for all $X \in 2^{I}$.
St7) $\varphi(X \cap Y)=\varphi(X) \cap \varphi(Y)$, for all $X, Y \in 2^{I}$.
St8) $\varphi(X \cup Y)=\varphi(X) \cup \varphi(Y)$, for all $X, Y \in 2^{I}$.
Then, (see for instance [7], [51]), it is well known that:
St9) $\sim \sim X=X$, for all $X \in 2^{I}$.
St10) $\sim(X \cap Y)=\sim X \cup \sim Y$, for all $X, Y \in 2^{I}$.
St11) $\sim I=\emptyset$.
Therefore the system $\left(2^{I}, \cap, \cup, \sim, I\right)$ is a De Morgan algebra.
We shall prove next that the operator $\boldsymbol{\nabla}$ also verifies axioms L6) and L7).
$L 6) \sim X \cup \nabla X=I$, for all $X \in \mathcal{P}(I)$.
$\overline{\text { Indeed } \nabla} \boldsymbol{\nabla} X=\bigcup_{i \in X} \boldsymbol{\nabla}\{i\}=\bigcup_{i \in X}(\{i\} \cup\{\varphi(i)\})=\bigcup_{i \in X}\{i\} \cup \bigcup_{i \in X}\{\varphi(i)\}=X \cup \varphi(X)$.
Then $\sim X \cup \nabla X=\complement \varphi(X) \cup X \cup \varphi(X)=I$.
L7) $X \cap \sim X=\sim X \cap \nabla X$, for all $X \in \mathcal{P}(I)$.
$\sim X \cap \nabla X=\complement \varphi(X) \cap(X \cup \varphi(X))=(\complement \varphi(X) \cap X) \cup(\complement \varphi(X) \cap \varphi(X))=$ $(\complement \varphi(X) \cap X) \cup \emptyset=\complement \varphi(X) \cap X=\sim X \cap X$.

For the system $(\mathcal{P}(I), I, \sim, \nabla, \cap, \cup)$ to be a Lukasiewicz algebra it is necessary and sufficient that :

L8) $\nabla(X \cap Y)=\nabla X \cap \nabla Y$, for all $X, Y \in \mathcal{P}(I)$.
We show now that L8) holds if and only if $\varphi(i)=i$ for all $i \in I$, and therefore $\sim X=\complement X$ and $\nabla X=X \cup \varphi(X)=X$ for all $X \in \mathcal{P}(I)$, so in fact $(\mathcal{P}(I), \nabla)$ is a monadic boolean algebra with the discrete quantifier.

Assume that there exists $i \in I$ such that $j=\varphi(i) \neq i$. Then $\boldsymbol{\nabla}(\{i\} \cap\{j\})=$ $\nabla \emptyset=\emptyset, \nabla\{i\}=\{i\} \cup\{\varphi(i)\}=\{i\} \cup\{j\}=\{i, j\}$ and $\nabla\{j\}=\{j\} \cup\{\varphi(j)\}=$ $\{j\} \cup\{i\}=\{i, j\}$. Then $\nabla\{i\} \cap \nabla\{j\}=\{i, j\} \neq \emptyset$ and therefore L8) does not hold. Assume now that $\varphi(i)=i$ for all $i \in I$ then it clear that L8) holds.

Therefore the system $(\mathcal{P}(I), I, \sim, \nabla, \cap, \cup)$ is not in general a Eukasiewicz algebra, but there may exist subsets $S$ of $\mathcal{P}(I)$ such that $(S, I, \sim, \nabla, \cap, \cup)$ is a

Eukasiewicz algebra. As an example let $I=\{a, b, c\}$ and $\varphi: I \rightarrow I$ be defined by $\varphi(a)=a, \varphi(b)=c, \varphi(c)=b$.
$\mathcal{P}(I)$ is a boolean algebra with 3 atoms with the diagram shown below, where $A=\{a\}, B=\{b\}, C=\{c\}, D=\{a, b\}, E=\{a, c\}, F=\{b, c\}$.


| $X$ | $\sim X$ | $\nabla X$ |
| :---: | :---: | :---: |
| $\emptyset$ | $I$ | $\emptyset$ |
| $A$ | $F$ | $A$ |
| $B$ | $D$ | $F$ |
| $C$ | $E$ | $F$ |
| $D$ | $B$ | $I$ |
| $E$ | $C$ | $I$ |
| $F$ | $A$ | $F$ |
| $I$ | $\emptyset$ | $I$ |

Since $\varphi$ is not the identity on $I, \mathcal{P}(I)$ is not a Lukasiewicz algebra but it is easy to check that the subset $S=\{\emptyset, A, C, E, F, I\}$ is a Eukasiewicz algebra.

Definition 1.8.2. If I is a non-empty set, $\varphi$ an involution on I, and for each $X \in \mathcal{P}(I)$ we define the operators $\sim$ and $\boldsymbol{\nabla}$ as before, then every subset $S$ of $\mathcal{P}(I)$ such that $(S, I, \sim, \nabla, \cap, \cup)$ is a Eukasiewicz algebra will be called a Łukasiewicz algebra of sets determined by $\varphi$ or just $a$ Łukasiewicz algebra of sets.

This example of Łukasiewicz algebra is the most general one, since we will prove later on that every Łukasiewicz algebra is isomorphic to a Łukasiewicz algebra of sets.

Remark 1.8.3. To consider the boolean algebra $\mathcal{P}(I)$ is equivalent to considering the set $B^{I}$ of all the functions from $I$ to the boolean algebra $B=\{0,1\}$, which algebrized coordinatewise is a boolean algebra with top element the function $\mathbf{1}(i)=1$ for all $i \in I$. Given $f \in B^{I}$, if we define $(\nabla f)(i)=f(i) \vee f(\varphi(i))$, for all $i \in I$, then it is easy to prove that $\left(B^{I}, \nabla\right)$ is a monadic boolean algebra.

Given $f \in B^{I}$, and defining $(\sim f)(i)=-(f(\varphi(i)))$ for all $i \in I$ then $\left(B^{I}, \mathbf{1}, \sim\right.$ $, \wedge, \vee)$ is a De Morgan algebra. It is easy to see that axioms L6 and L7 hold. If $\varphi(i)=j \neq i$, consider the following elements of $B^{I}$ :

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x=i \\
0 & \text { if } x \neq i
\end{array} \quad g(x)= \begin{cases}1 & \text { if } x=\varphi(i)=j \\
0 & \text { if } x \neq \varphi(i)\end{cases}\right.
$$

Then $(f \wedge g)(x)=0$ for all $x \in I$ and therefore $(\nabla(f \wedge g))(x)=0$ for all $x \in I$. In the other hand $(\nabla f \wedge \nabla g)(x)=1$ for $x=i$ or $x=j$, so in general it doesn't hold that $\nabla(f \wedge g)=\nabla f \wedge \nabla g$.

Example 1.8.4. This example is due to Gr. C. Moisil. Let $K$ and $B=\{0,1\}$ be boolean algebras and let $F=K^{[B]}$ be the set of all the isotone functions from $B$ to $K$. Each element $f \in K^{[B]}$ can be represented as follows: $f=(f(0), f(1))$. We put by definition $\sim f=(-f(1),-f(0))$ and $\nabla f=(f(1), f(1))$. It is easy to check that $\left(K^{[B]}, \mathbf{1}, \sim, \nabla, \wedge, \vee\right)$ is a Eukasiewicz algebra.

Let $K=\{0, a, b, 1\}$ be a boolean algebra with two atoms $a$ and $b$. The elements of $K^{[B]}$, the operators $\sim, \nabla$ and the Hasse diagram are indicated below:


| $f$ | $\sim f$ | $\nabla f$ |
| :---: | :---: | :---: |
| $(0,0)$ | $(1,1)$ | $(0,0)$ |
| $(0, a)$ | $(b, 1)$ | $(a, a)$ |
| $(0, b)$ | $(a, 1)$ | $(b, b)$ |
| $(0,1)$ | $(0,1)$ | $(1,1)$ |
| $(a, a)$ | $(b, b)$ | $(a, a)$ |
| $(b, b)$ | $(a, a)$ | $(b, b)$ |
| $(a, 1)$ | $(0, b)$ | $(1,1)$ |
| $(b, 1)$ | $(0, a)$ | $(1,1)$ |
| $(1,1)$ | $(0,0)$ | $(1,1)$ |

This same construction was considered by A. Rose in [74].

### 1.9. 3 -rings

Let $A=\{0,1,2\}$ be the ring of the integers modulo 3 , so the table of the operations + and $\cdot$ are


Therefore this ring verifies (1) $3 x=0$, (2) $x^{3}=x$ and (3) $x y=y x$. Because of condition (2) it follows that every polynomial in two variables is of the form

$$
P(x, y)=a+b x+c y+d x^{2}+e y^{2}+f x y+g x^{2} y+h x y^{2}+i x^{2} y^{2} .
$$

We want now to define meet and join operations on the set $A$ so that $A$ becomes the chain in the figure below, thus $\wedge$ and $\vee$ are given by the tables that follow:


| $\wedge$ | 0 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 2 | 0 | 2 | 2 |
| 1 | 0 | 2 | 1 |


| V | 0 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 2 | 1 |
| 2 | 2 | 2 | 1 |
| 1 | 1 | 1 | 1 |

To whether there exists a polynomial function that yields the meet operation in this ring, we must solve the following system of equations:

$$
\begin{gather*}
\text { (1) } 0 \wedge 0=0=P(0,0)=a \\
\text { (2) } 0 \wedge 2=0=P(0,2)=a+2 c+e,  \tag{2}\\
\text { (3) } 0 \wedge 1=0=P(0,1)=a+c+e, \\
\text { (4) } 2 \wedge 0=0=P(2,0)=a+2 b+d, \\
2 \wedge 2=2=P(2,2)=a+2 b+2 c+d+e+f+2 g+2 h+i, \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
2 \wedge 1=2=P(2,1)=a+2 b+c+d+e+2 f+g+2 h+i, \tag{6}
\end{equation*}
$$

(7) $\quad 1 \wedge 0=0=P(1,0)=a+b+d$,

$$
\begin{equation*}
1 \wedge 2=2=P(1,2)=a+b+2 c+d+e+2 f+2 g+h+i, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
1 \wedge 1=1=P(1,1)=a+b+c+d+e+f+g+h+i \tag{9}
\end{equation*}
$$

By (1) we have $a=0$ so replacing in the equations (2)-(9) we have:

$$
\begin{gather*}
0=2 c+e  \tag{10}\\
0=c+e  \tag{11}\\
0=2 b+d \tag{12}
\end{gather*}
$$

$$
\begin{align*}
2= & 2 b+2 c+d+e+f+2 g+2 h+i,  \tag{13}\\
2= & 2 b+c+d+e+2 f+g+2 h+i,  \tag{14}\\
& (15) \quad 0=b+d, \\
2= & b+2 c+d+e+2 f+2 g+h+i,  \tag{16}\\
1= & b+c+d+e+f+g+h+i,
\end{align*}
$$

Adding (10) and (11) we have $3 c+2 e=0$ this is $2 e=0$ and therefore $e=0$. Then from (11) it follows that $c=0$. Analogously, adding (12) and (15) we have $3 b+2 d=0$ and therefore $2 d=0$, so in consequence $d=0$, and by (15) it follows that $b=0$.

Replacing these values in (13), (14),(16) and (17) we have

$$
\begin{gather*}
2=f+2 g+2 h+i,  \tag{18}\\
2=2 f+g+2 h+i,  \tag{19}\\
2=2 f+2 g+h+i,  \tag{20}\\
1=f+g+h+i \tag{21}
\end{gather*}
$$

Adding (19) and (21) we obtain $2 g+2 i=0$ and therefore:
(22) $0=g+i$.

Adding (18) and (21) we get $2 f+2 i=0$ so:
(23) $0=f+i$.

Adding (20) and (21) we get $2 h+2 i=0$ and therefore:

$$
\begin{equation*}
0=h+i . \tag{24}
\end{equation*}
$$

From (24) and (21) we have:

$$
\text { (25) } \quad 1=f+g .
$$

From the equations (22), (23) and (24) it follows that $i=-g, i=-f$ and $i=$ $-h$. Therefore $g=f=h$. Thus from (25) it follows that $1=f+g=f+f=2 f$ and therefore $f=2$, so in consequence $h=g=2$.

Replacing in (21) we have $1=2+2+2+i$ and therefore $i=1$. We thus obtain

$$
\begin{equation*}
x \wedge y=2 x y+2 x^{2} y+2 x y^{2}+x^{2} y^{2}=2 x y+2 x y(x+y)+x^{2} y^{2} . \tag{1.9.1}
\end{equation*}
$$

Analogously we have:

$$
\begin{equation*}
x \vee y=x+y+x y+x^{2} y+x y^{2}+2 x^{2} y^{2} . \tag{1.9.2}
\end{equation*}
$$

Performing the corresponding calculations we have that:

$$
(x \wedge y)^{2}=x^{2} y^{2}=(x y)^{2}
$$

and

$$
(x \vee y)^{2}=\left(x^{2}+y^{2}\right)^{2}=x^{2}+2 x^{2} y^{2}+y^{2} .
$$

From the definition of the operations $\wedge$ and $\vee$ on $A$ we know $A$ is a distributive lattice given that $A$ is a chain.

We shall define two unary operations on $A$ so that $A$ is equal to the Łukasiewicz algebra from Example 1.2.3. Every polynomial in one variable is of the form $P(x)=a+b x+c x^{2}$. Then if $Q$ is the polynomial corresponding to $\sim$, the following equations must hold:

$$
\begin{equation*}
1=Q(0)=a \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
2=Q(2)=a+2 b+2^{2} c=a+2 b+c=1+2 b+c \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
0=Q(1)=a+b+c=1+b+c \tag{28}
\end{equation*}
$$

Adding (27) and (28) we obtain $2=2+3 b+2 c$ and therefore $3 b+2 c=0$, this is $2 c=0$, so in consequence $c=0$. Then, replacing in (28) we have $0=1+b+0=$ $1+b$ and therefore $b=-1=2$, so

$$
\begin{equation*}
\sim x=2 x+1 \tag{1.9.3}
\end{equation*}
$$

If $R$ is the polynomial corresponding to $\nabla, R$ must verify:

$$
\begin{equation*}
0=R(0)=a \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
1=R(2)=a+2 b+2^{2} c=a+2 b+c=2 b+c \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
1=R(1)=a+b+c=b+c \tag{31}
\end{equation*}
$$

Adding (30) and (31) we obtain $2=3 b+2 c$, this is $2=2 c$ and therefore $c=1$, so from (31) it follows that $1=1+b$ and therefore $b=0$. Thus we obtain

$$
\begin{equation*}
\nabla x=x^{2} \tag{1.9.4}
\end{equation*}
$$

We now show that $\sim$ and $\nabla$ verify the Lukasiewicz algebra axioms:
L4) $\sim \sim x=x$.
$\sim \sim x=\sim(1+2 x)=1+2(1+2 x)=1+2+x=x$.
L5) $\sim x \vee \sim y=\sim(x \wedge y)$.
$\sim(x \wedge y)=1+2(x \wedge y)=1+2\left(2 x y+2 x^{2} y+2 x y^{2}+x^{2} y^{2}\right)=$
$1+x y+x^{2} y+x y^{2}+2 x^{2} y^{2}$.
$\sim x \vee \sim y=(1+2 x) \vee(1+2 y)=1+2 x+1+2 y+(1+2 x)(1+2 y)+(1+$ $\left.x+x^{2}\right)(1+2 y)+(1+2 x)\left(1+y+y^{2}\right)+2\left(1+x+x^{2}\right)\left(1+y+y^{2}\right)=2+2 x+2 y+$ $1+2 y+2 x+x y+1+2 y+x+2 x y+x^{2}+2 x^{2} y+1+y+y^{2}+2 x+2 x y+2 x y^{2}+2+$ $2 y+2 y^{2}+2 x+2 x y+2 x y^{2}+2 x^{2}+2 x^{2} y+2 x^{2} y^{2}=1+x y+x^{2} y+x y^{2}+2 x^{2} y^{2}$.

L6) $\sim x \vee \nabla x=1$.
$\sim x \vee \nabla x=(1+2 x) \vee x^{2}=1+2 x+x^{2}+x^{2}+2 x+\left(1+x+x^{2}\right) x^{2}+(1+$ $2 x) x^{2}+2\left(1+x+x^{2}\right) x^{2}=1+x+2 x^{2}+x^{2}+x+x^{2}+x^{2}+2 x+2 x^{2}+2 x+2 x^{2}=1$.

L7) $\sim x \wedge x=\sim x \wedge \nabla x$.
$\sim x \wedge x=2(1+2 x) x+2\left(1+x+x^{2}\right) x+2(1+2 x) x^{2}+\left(1+x+x^{2}\right) x^{2}=$ $2 x+x^{2}+2 x+2 x^{2}+2 x+2 x^{2}+x+x^{2}+x+x^{2}=2 x+x^{2}$.
$\sim x \wedge \nabla x=(1+2 x) \wedge x^{2}=2(1+2 x) x^{2}+2\left(1+x+x^{2}\right) x^{2}+2(1+2 x) x^{2}+$ $\left(1+x+x^{2}\right) x^{2}=2 x^{2}+x+2 x^{2}+2 x+2 x^{2}+2 x^{2}+x+x^{2}+x+x^{2}=2 x+x^{2}$.

L8) $\nabla(x \wedge y)=\nabla x \wedge \nabla y$.
We already know that $(x \wedge y)^{2}=x^{2} y^{2}$ so $\nabla(x \wedge y)=(x \wedge y)^{2}=x^{2} y^{2}$. $\nabla x \wedge \nabla y=x^{2} \wedge y^{2}=2 x^{2} y^{2}+2 x^{2} y^{2}+2 x^{2} y^{2}+x^{2} y^{2}=x^{2} y^{2}$
Furthermore, 2 is the center of $A$ since $\sim 2=2.2+1=1+1=2$.
Let $(A,+, \cdot, 1)$ be a commutative ring with identity. With 0 we denote the identity for addition. We write $x y$ instead of $x \cdot y$. A commutative ring with identity (1) $A$, verifying $3 x=0$ and $x^{3}=x$, for all $x \in A$, is a 3-ring.

Theorem 1.9.1. (Gr. C. Moisil) If $A$ is a 3 -ring, then defining the operations $\wedge, \vee, \sim$ and $\nabla$ on $A$ by the formulas (1.9.1)), (1.9.2)), (1.9.3)) and (1.9.4)) indicated above, the system $(A, 1, \sim, \nabla, \wedge, \vee)$, is a centered Łukasiewicz algebra.

Proof. We prove first that Sholander's axioms [75] hold:
L2) $x \wedge(x \vee y)=2 x(x \vee y)+2 x^{2}(x \vee y)+2 x(x \vee y)^{2}+x^{2}(x \vee y)^{2}$.
(1) $2 x(x \vee y)=2 x\left(x+y+x y+x y(x+y)+2 x^{2} y^{2}\right)=2 x^{2}+2 x y+2 x^{2} y+2 x^{3} y+$ $2 x^{2} y^{2}+x^{3} y^{2}=2 x^{2}+x y+x y^{2}+2 x^{2} y+2 x^{2} y^{2}$.
(2) $2 x^{2}(x \vee y)=2 x^{2}\left(x+y+x y+x y(x+y)+2 x^{2} y^{2}\right)=2 x^{3}+2 x^{2} y+2 x^{3} y+$ $2 x^{2} y+2 x^{3} y^{2}+x^{2} y^{2}=2 x+2 x y+2 x y^{2}+x^{2} y+x^{2} y^{2}$.

From (1) and (2) it follows that (3) $2 x(x \vee y)^{2}+2 x^{2}(x \vee y)=2 x+2 x^{2}$.
(4) $2 x(x \vee y)^{2}=2 x\left(x^{2}+y^{2}+2 x^{2} y^{2}\right)=2 x^{3}+2 x y^{2}+x y^{2}=2 x$.
(5) $x^{2}(x \vee y)^{2}=x^{2}\left(x^{2}+y^{2}+2 x^{2} y^{2}\right)=x^{2}+x^{2} y^{2}+2 x^{2} y^{2}=x^{2}$.

From (3), (4) and (5) we get: $x \wedge(x \vee y)=2 x+2 x^{2}+2 x+x^{2}=x$.
L3) $x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x)$.
$x \wedge(y \vee z)=2 x(y \vee z)+2 x^{2}(y \vee z)+2 x(y \vee z)^{2}+x^{2}(y \vee z)^{2}=$
$2 x\left(y+z+y z+y^{2} z+y z^{2}+2 y^{2} z^{2}\right)+2 x^{2}\left(y+z+y z+y^{2} z+y z^{2}+2 y^{2} z^{2}\right)+$
$2 x\left(y^{2}+z^{2}+2 y^{2} z^{2}\right)+x^{2}\left(y^{2}+z^{2}+2 y^{2} z^{2}\right)=$
$2 x y+2 x z+2 x y z+2 x y^{2} z+2 x y z^{2}+x y^{2} z^{2}+2 x^{2} y+2 x^{2} z+2 x^{2} y z+2 x^{2} y^{2} z+2 x^{2} y z^{2}+$ $x^{2} y^{2} z^{2}+2 x y^{2}+2 x z^{2}+x y^{2} z^{2}+x^{2} y^{2}+x^{2} z^{2}+2 x^{2} y^{2} z^{2}=2 x y+2 x z+2 x y^{2}+2 x z^{2}+$ $x^{2} y^{2}+x^{2} z^{2}+2 x^{2} y+2 x^{2} z+2 x y z+2 x y z^{2}+2 x y^{2} z+2 x y^{2} z^{2}+2 x^{2} y z+2 x^{2} y^{2} z+2 x^{2} y z^{2}$.

On the other hand, $(z \wedge x) \vee(y \wedge x)=(z \wedge x)+(y \wedge x)+(z \wedge x)(y \wedge x)+$ $(z \wedge x)^{2}(y \wedge x)+(z \wedge x)(y \wedge x)^{2}+2(z \wedge x)^{2}(y \wedge x)^{2}$. We now calculate:
(6) $z \wedge x=2 x z+2 x z^{2}+2 x^{2} z+x^{2} z^{2}$,
(7) $y \wedge z=2 x y+2 x y^{2}+2 x^{2} y+x^{2} y^{2}$,
(8) $(z \wedge x)(y \wedge x)=2 x y z+x y^{2} z^{2}+2 x^{2} y z+2 x^{2} y^{2} z^{2}$,
(9) $(z \wedge x)^{2}(y \wedge x)=2 x y z^{2}+2 x y^{2} z^{2}+2 x^{2} y z^{2}+x^{2} y^{2} z^{2}$,
(10) $(z \wedge x)(y \wedge x)^{2}=2 x y^{2} z+2 x y^{2} z^{2}+2 x^{2} y^{2} z+x^{2} y^{2} z^{2}$,
(11) $(z \wedge x)^{2}(y \wedge x)^{2}=2 x^{2} y^{2} z^{2}$, so from (6) to (11) it follows that:
$(z \wedge x) \vee(y \wedge x)=2 x y+2 x z+2 x y^{2}+2 x z^{2}+x^{2} y^{2}+x^{2} z^{2}+2 x^{2} y+2 x^{2} z+$ $2 x y z+2 x y z^{2}+2 x y^{2} z+2 x y^{2} z^{2}+2 x^{2} y z+2 x^{2} y^{2} z+2 x^{2} y z^{2}$.

We have already checked above the axioms L4)-L8) and that $c=1+1$ is the center of $A$.

Theorem 1.9.2. If $(A, 1, \sim, \nabla, \wedge, \vee)$, is a Eukasiewicz algebra with center $c$ and we define:

$$
\begin{gathered}
x+y=(\sim \nabla x \wedge \Delta y) \vee(\sim \nabla y \wedge \Delta x) \vee(\nabla x \wedge \nabla y \wedge \nabla \sim x \wedge \nabla \sim y) \vee \\
(c \wedge((\sim \nabla x \wedge \nabla y \wedge \nabla \sim y) \vee(\sim \nabla y \wedge \nabla x \wedge \nabla \sim x) \vee(\Delta x \wedge \Delta y))) \\
x \cdot y=(\Delta x \wedge \Delta y) \vee(\nabla x \wedge \nabla y \wedge \nabla \sim x \wedge \nabla \sim y) \vee \\
(c \wedge((\Delta x \wedge \nabla y \wedge \nabla \sim y) \vee(\Delta y \wedge \nabla x \wedge \nabla \sim x)))
\end{gathered}
$$

then the system $(A, 1,0,+, \cdot)$ is a 3 -ring. Moisil [27].
If $(A, 1,0,+, \cdot)$ is a commutative ring with unity 1 such that $x^{3}=x$ then $6 x=0$. Indeed:
$x+y=(x+y)(x+y)(x+y)=x x x+x x y+x y x+x y y+y x x+y x y+y y x+y y y$
so

$$
x+y=x+x x y+x y x+x y y+y x x+y x y+y y x+y
$$

and therefore

$$
x x y+x y x+x y y+y x x+y x y+y y x=0
$$

then for $x=y$ we have that $x^{3}+x^{3}+x^{3}+x^{3}+x^{3}+x^{3}=0$, this is $6 x=$ $x+x+x+x+x+x=0$, so $-x=5 x$.

In a similar way to the one indicated above, we can prove that if in a commutative ring with unity verifying $x^{3}=x$ we define:

$$
\begin{gathered}
x \wedge y:=2 x y+2 x^{2} y+2 x y^{2}+x^{2} y^{2}=2 x y+2 x y(x+y)+x^{2} y^{2} \\
x \vee y:=x+y+x y+x^{2} y+x y^{2}+2 x^{2} y^{2},
\end{gathered}
$$

then $(A, 0,1, \wedge, \vee)$ is a bounded distributive lattice.
Defining $\sim x=1+5 x$ and $\nabla x=x^{2}$ then $(A, 1, \sim, \nabla, \wedge, \vee)$, is a Łukasiewicz algebra. Furthermore, $e=1+1$ is the axis of the algebra $A$.

Theorem 1.9.3. If $(A, 1, \sim, \nabla, \wedge, \vee)$, is a Łukasiewicz algebra with axis $e$ and we define:

$$
\begin{aligned}
& x+y:=(\sim \nabla x \wedge \Delta y) \vee(\sim \nabla y \wedge \Delta x) \vee(\nabla x \wedge \nabla y \wedge \nabla \sim x \wedge \nabla \sim y) \vee \\
&(e \wedge((\sim \nabla x \wedge \nabla y \wedge \nabla \sim y) \vee(\sim \nabla y \wedge \nabla x \wedge \nabla \sim x) \vee(\Delta x \wedge \Delta y))) \\
& x \cdot y:=(\Delta x \wedge \Delta y) \vee(\nabla x \wedge \nabla y \wedge \nabla \sim x \wedge \nabla \sim y) \vee \\
&(e \wedge((\Delta x \wedge \nabla y \wedge \nabla \sim y) \vee(\Delta y \wedge \nabla x \wedge \nabla \sim x)))
\end{aligned}
$$

then the system $(A, 1,0,+, \cdot)$ is a commutative ring with unity such that $x^{3}=x$, Gr. C. Moisil [27].

### 1.10. Construction of Łukasiewicz algebras from monadic boolean algebras

In the preceding sections we have found analogies between monadic boolean algebras and Łukasiewicz algebras, but there are also fundamental differences. As an example, Moisil's determination principle does not hold in monadic boolean algebras. To see this, consider the monadic boolean algebra in the next figure:


| $x$ | $\exists x$ | $\forall x$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| $a$ | 1 | 0 |
| $b$ | 1 | 0 |
| 1 | 1 | 1 |

Here we have that $\exists a=\exists b=1, \forall a=\forall b=0$ and $a \neq b$.
This example suggests the idea of identifying two elements $a$ and $b$ of a monadic boolean algebra if :

$$
\exists a=\exists b \text { and } \forall a=\forall b,
$$

and in this case denote $a \equiv b$.
It is clear that this is an equivalence relation. In the previous example there exist three equivalence classes, namely $C(0)=\{0\}, C(a)=\{a, b\}$ and $C(1)=\{1\}$. We consider the quotient set $A^{\prime}=A / \equiv$. It is natural to think that $A^{\prime}$ is the chain indicated below.


We already know, as we have shown before, that on the preceding set a Łukasiewicz algebra structure can be defined.

Notice that the " $\equiv$ " relation is not compatible with the " V " operation defined on $A$. Indeed, $a \equiv a$ and $a \equiv b$ but $a \vee a=a \not \equiv 1=a \vee b$. This means that the join operation in $A^{\prime}$ must be defined in a special way. A. Monteiro determined a general construction, which he called construction $\mathcal{L}$, and which allows to define a Lukasiewicz algebra $\mathcal{L}(A)$ from a monadic boolean algebra $A$. By analogy with the Lukasiewicz algebras, if $A$ is a monadic boolean algebra, we can define the weak implication by:

$$
x \rightarrow y=\exists-x \vee y,
$$

and the contraposed implication by

$$
x \mapsto y=(x \rightarrow y) \wedge(-y \rightarrow-x) .
$$

Then it is natural to define in $A$ the following operations:

$$
x \cup y=(x \mapsto y) \longmapsto y
$$

$$
x \cap y=-(-x \cup-y)
$$

Notice that $x \mapsto y=(\exists-x \vee y) \wedge(\exists y \vee-x)$, so

$$
\begin{gathered}
x \cup y=(x \mapsto y) \longmapsto y=(\exists-(x \mapsto y) \vee y) \wedge(\exists y \vee-(x \mapsto y))= \\
((\forall x \wedge \exists-y) \vee(\forall-y \wedge \exists x) \vee y) \wedge(\exists y \vee(\forall x \wedge-y) \vee(\forall-y \wedge x))=
\end{gathered}
$$

$(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall x \wedge \exists-y \wedge \forall x \wedge-y) \vee(\forall x \wedge \exists-y \wedge \forall-y \wedge x) \vee$

$$
\begin{gathered}
(\forall-y \wedge \exists x \wedge \exists y) \vee(\forall-y \wedge \exists x \wedge \forall x \wedge-y) \vee(\forall-y \wedge \exists x \wedge \forall-y \wedge x) \vee \\
(y \wedge \exists y) \vee(y \wedge \forall x \wedge-y) \vee(y \wedge \forall-y \wedge x)= \\
(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall x \wedge-y) \vee(\forall x \wedge \forall-y) \vee \\
0 \vee(\forall-y \wedge \forall x) \vee(\forall-y \wedge x) \vee y \vee 0 \vee 0= \\
(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall x \wedge-y) \vee(\forall x \wedge \forall-y) \vee(\forall-y \wedge x) \vee y
\end{gathered}
$$

and since $\forall x \wedge \forall-y \leq \forall x \wedge-y$ we have that

$$
\begin{gathered}
x \cup y=(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall x \wedge-y) \vee(\forall-y \wedge x) \vee y= \\
(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall-y \wedge x) \vee((\forall x \vee y) \wedge(-y \vee y))= \\
(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall-y \wedge x) \vee((\forall x \vee y) \wedge 1)= \\
(\forall x \wedge \exists-y \wedge \exists y) \vee(\forall-y \wedge x) \vee \forall x \vee y
\end{gathered}
$$

and since $\forall x \wedge \exists-y \wedge \exists y \leq \forall x$ then

$$
x \cup y=\forall x \vee y \vee(x \wedge \forall-y)=
$$

$(\forall x \vee y \vee x) \wedge(\forall x \vee y \vee \forall-y)=(x \vee y) \wedge(\forall x \vee y \vee \forall-y)$.
Therefore we have that:
U1) $x \cup y=\forall x \vee y \vee(x \wedge \forall-y)$,
U2) $x \cup y=(x \vee y) \wedge(\forall x \vee y \vee \forall-y)$.
Then $x \cap y=-(-x \cup-y)=-(\forall-x \vee-y \vee(-x \wedge \forall y))=-\forall-x \wedge y \wedge(x \vee-\forall y)=$ $\exists x \wedge y \wedge(x \vee \exists-y)=(\exists x \wedge y \wedge x) \vee(\exists x \wedge y \wedge \exists-y)=(x \wedge y) \vee(\exists x \wedge y \wedge \exists-y)=$ $y \wedge(x \vee(\exists x \wedge \exists-y))=y \wedge(x \vee \exists x) \wedge(x \wedge \exists-y)=\exists x \wedge y \wedge(x \vee \exists-y)$.

Therefore we have that:
C1) $x \cap y=\exists x \wedge y \wedge(x \vee \exists-y)$,
C2) $x \cap y=(x \wedge y) \vee(\exists x \wedge y \wedge \exists-y)$,

Definition 1.10.1. Given two elements $a$ and $b$ of a monadic boolean algebra $A$ we shall say that they are equivalent and denote $a \equiv b$ if $a \longmapsto b=1$ and $b \mapsto a=1$.

Lemma 1.10.2. a) $a \mapsto b=1$ and $b \mapsto a=1$ is equivalent to b) $\exists a=\exists b$ and $\forall a=\forall b$.

Proof. Since $a \hookrightarrow b=(a \rightarrow b) \wedge(-b \rightarrow-a)=(\exists-a \vee b) \wedge(\exists b \vee-a)$ and $b \mapsto a=(b \rightarrow a) \wedge(-a \rightarrow-b)=(\exists-b \vee a) \wedge(\exists a \vee-b)$ then if a) holds we have that $\exists-a \vee b=1, \exists b \vee-a=1, \exists-b \vee a=1, \exists a \vee-b=1$ and this is equivalent to (1) $\forall a \leq b$, (2) $\forall b \leq a$, (3) $b \leq \exists a$, and (4) $a \leq \exists b$. (1) and (2) are equivalent to $\forall a \leq \forall b$ and $\forall b \leq \forall a$, then $\forall a=\forall b$. (3) and (4) are equivalent to $\exists b \leq \exists a$, and $\exists b \leq \exists a$, this is $\exists a=\exists b$.

Now we assume that b) holds. Then $a \rightarrow b=\exists-a \vee b=-\forall a \vee b=-\forall b \vee b$. Since $\forall b \leq b, 1=-b \vee b \leq-\forall b \vee b$, so $a \rightarrow b=1$. In a similar way, $-b \rightarrow-a=$ $\exists a \vee-a=1$ so $a \multimap b=1$. An analogous calculation shows that $b \mapsto a=1$ as well.

To prove that the relation $\equiv$ is compatible with the operations $\cap$ and $\cup$, L. Monteiro [70] proved that:

Lemma 1.10.3. (1) $\exists(x \cap y)=\exists x \wedge \exists y$, (2) $\exists(x \cup y)=\exists x \vee \exists y$, (3) $\forall(x \cap y)=$ $\forall x \wedge \forall y$, (4) $\forall(x \cup y)=\forall x \vee \forall y$.

The relation " $\equiv$ " is an equivalence relation compatible with the operations -, $\exists, \cap$ and $\cup$. Consider the quotient set $\mathcal{L}(A)=A / \equiv$, and represent by $C(x)$ the equivalence class containing the element $x \in A$, then if we define $I=C(1), \sim$ $C(x)=C(-x), \nabla C(x)=C(\exists x), C(x) \cap C(y)=C(x \cap y)$, and $C(x) \cup C(y)=$ $C(x \cup y)$, then we have the following theorem by A. Monteiro:

If $(A, \exists)$ is a monadic boolean algebra then the system $(\mathcal{L}(A), I, \sim, \nabla, \cap, \cup)$ is a Eukasiewicz algebra.

## Notes

1) The proof of the preceding theorem was only published in 1967, [32], but the results were presented in the course given in 1963, [36] and in [40].
2) In the proof, Professor A. Monteiro used the theory of $N$-lattices, (see H. Rasiowa [72]) and in particular his results on semi-simple $N$ lattices.
3) The results on semi-simple $N$-lattices were only published in 1995 in the series Informes Técnicos Internos ${ }^{2}$ No. 50 from the INMABB $^{3}$, and later in 1996, in the Notas de Lógica Matemática ${ }^{4}$ No. 40, [48] also published by the INMABB.
4) Since in the statement of the preceding theorem only notions from the theory of monadic boolean algebras appear, Professor A. Monteiro posed to his students the problem of finding a proof without using the results on $N$-lattices.
5) This problem was solved by L. Monteiro and L. González Cóppola and published in 1964, [70].
6) Later on, Professor A. Monteiro [40] proved this result: Given a Lukasiewicz algebra $L$, there exists a monadic boolean algebra $A$ such that

[^1]$\mathcal{L}(A)$ is isomorphic to $L$. This was presented in a 1966 seminar [44]. The proof, which will be presented in section 5.7, a representation theorem of Łukasiewicz algebras by Łukasiewicz algebras of sets, which will figure in section 5.6, and which uses the Axiom of Choice. This representation theorem was published in 1995 in No. 45 of the Informes Técnicos Internos from the INMABB, and later in 1996, in Notas de Lógica Matemática No. 40 [48].
7) L. Monteiro produced a purely algebraic proof of the preceding result and presented it in a Seminar conducted by Professor A. Monteiro [44], held in 1966. This proof was published in 1978, [65].
Remark 1.10.4. In a monadic boolean algebra $A$, we denote
$$
K(A)=\{x \in A: \exists x=x\} .
$$

If $k \in K(A)$, this is, if $\exists k=k$ then we have that $\nabla C(k)=C(\exists k)=C(k)$, so $C(k) \in B(\mathcal{L}(A))$. Conversely, if $C(k) \in B(\mathcal{L}(A))$, this is, $\nabla C(k)=C(k)$, and therefore $C(\exists k)=C(k)$, then $\exists k \equiv k$, from where in particular it results that $\forall \exists k=\forall k$, so $\exists k=\forall k$ and therefore $\exists k=k$ thus $k \in K(A)$.

Let $k_{1}, k_{2} \in K(A)$ and assume that $C\left(k_{1}\right)=C\left(k_{2}\right)$, so $k_{1} \equiv k_{2}$, therefore $k_{1}=\exists k_{1}=\exists k_{2}=k_{2}$.

Then, if $A$ is finite, we have that $|B(\mathcal{L}(A))|=|K(A)|$. Furthermore the boolean algebras $B(\mathcal{L}(A))$ and $K(A)$ are isomorphic. Indeed, if $k_{1}, k_{2} \in K(A)$ are such that $k_{1} \leq k_{2}$ then $k_{1} \vee k_{2}=k_{2}$ and therefore by Lemma 1.10.3, $\exists\left(k_{1} \cup k_{2}\right)=$ $\exists k_{1} \vee \exists k_{2}=k_{1} \vee k_{2}=k_{2}$ and analogously $\forall\left(k_{1} \cup k_{2}\right)=k_{2}$, so $k_{1} \cup k_{2} \equiv k_{2}$ and therefore $C\left(k_{1}\right) \cup C\left(k_{2}\right)=C\left(k_{1} \cup k_{2}\right)=C\left(k_{2}\right)$, this is $C\left(k_{1}\right) \leq C\left(k_{2}\right)$. Conversely, if $C\left(k_{1}\right) \leq C\left(k_{2}\right)$, this is, $C\left(k_{1} \cup k_{2}\right)=C\left(k_{1}\right) \cup C\left(k_{2}\right)=C\left(k_{2}\right)$, so $k_{1} \cup k_{2} \equiv k_{2}$ and therefore in particular $\exists\left(k_{1} \cup k_{2}\right)=\exists k_{2}$, this is, $k_{1} \cup k_{2}=k_{2}$, so $k_{1} \leq k_{2}$.

Assume that $A$ is a finite, non trivial monadic boolean algebra, and denote by $\mathcal{A}(A)$ the set of all the atoms of $A$.

If $x \in A$ we write $(C(x)]=\{C(y) \in \mathcal{L}(A): C(y) \leq C(x)\}$.
Lemma 1.10.5. If $a \in \mathcal{A}(A) \cap K(A)$ then $(C(a)]=\{C(0), C(a)\}$.
Proof. It is clear that $\{C(0), C(a)\} \subseteq(C(a)]$. From $a \in K(A)$ it follows that $C(a) \in B(\mathcal{L}(A))$. If $C(x) \in(C(a)]$, this is, $C(x) \leq C(a)$, then $C(x \cap a)=$ $C(x) \cap C(a)=C(x)$ so $x \cap a \equiv x$ and in particular $\exists(x \cap a)=\exists x$, then by Lemma 1.10.3 $\exists x \wedge \exists a=\exists x$ and since $a \in K(A)$, we have that $\exists x \wedge a=\exists x$. Then $0 \leq \exists x \leq a$ whence since $a$ is an atom of $A$ it follows that (1) $\exists x=0$ or (2) $\exists x=a$. If (1) holds then $x=0$ and if (2) holds, since $0 \leq x \leq \exists x=a$ and $a$ is an atom, we have that $x=0$ or $x=a$.

Lemma 1.10.6. If $k \in K(A) y(C(k)]=\{C(0), C(k)\}$ then $k$ is an atom of A.

Proof. Assume that (1) $0 \leq y \leq k$, where $y \in A$, so $C(0) \leq C(y) \leq C(k)$ and therefore $C(y)=C(0)$ or $C(y)=C(k)$, this is (2) $y \equiv 0$ or (3) $y \equiv k$. If (2) holds, then in particular $0=\exists 0=\exists y \geq y$ so $y=0$. If (3) holds then in particular (4) $k=\forall k=\forall y \leq y$. Then from (1) and (4) it follows that $y=k$.

Lemma 1.10.7. If $a \in \mathcal{A}(A)$ and $a \notin K(A)$ then $\exists a$ is an atom of $K(A)$.
Proof. Let $y \in \mathcal{A}(A)$ such that $0 \leq y \leq \exists a$. Then $y=\exists y \leq \exists a$ so (1) $\exists y=\exists y \wedge \exists a=\exists(a \wedge \exists y)=\exists(a \wedge y)$. Since $a \in \mathcal{A}(A)$, we have $a \wedge y=0$ or $a \wedge y=a$. In the first case, from (1) it follows that $y=\exists y=\exists 0=0$ and in the second case, (1) implies that $y=\exists y=\exists a$. Therefore, $\exists a$ is an atom of $K(A)$.

Lemma 1.10.8. If $a \in \mathcal{A}(A)$ and $a \notin K(A)$ then

$$
(C(\exists a)]=\{C(0), C(a), C(\exists a)\} .
$$

Proof. Since $0 \leq a \leq \exists a$, then $C(0) \leq C(a) \leq C(\exists a)$ so $\{C(0), C(a), C(\exists a)\} \subseteq(C(\exists a)]$.

Assume now that $C(x) \in(C(\exists a)]$, this is, $C(x) \leq C(\exists a)$ and therefore $C(x \cup$ $\exists a)=C(x) \cup C(\exists a)=C(\exists a)$ then $x \cup \exists a \equiv \exists a$ and in particular $\exists x \vee \exists a=$ $\exists(x \cup \exists a)=\exists a$. Therefore $0 \leq \exists x \leq \exists a$. By Lemma 1.10.7, $\exists a$ is an atom of $K(A)$ and since $\exists x \in K(A)$ we have that (1) $\exists x=0$ or (2) $\exists x=\exists a$. If (1) holds then $x=0$ and therefore $C(x)=C(0)$. If (2) holds then since $0 \leq \forall x \leq \exists x=\exists a$ and $\exists a$ is an atom of $K(A)$ and $\forall x \in K(A)$ we have that (3) $\forall x=0$ or (4) $\forall x=\exists a$.

Since $a \in \mathcal{A}(A)$ and $a \notin K(A)$ then $\forall a=0$, so if (3) holds we have that (5) $\forall x=0=\forall a$. From (5) and (2) it follows that $x \equiv a$ and therefore $C(x)=C(a)$. If (4) holds then $C(\forall x)=C(\exists a)=C(\exists x)$, this is $\Delta C(x)=\nabla C(x)$ and therefore $C(x) \in B(\mathcal{L}(A))$ so $\nabla C(x)=C(x)$, this is, $C(\exists x)=C(x)$ and therefore $x \equiv \exists x$. Then in particular $\forall x=\exists x$ and consequently $x \in K(A)$, this is, (6) $\forall x=x$. From (6) and (2) it follows that $x=\exists a$ and therefore $C(x)=C(\exists a)$.

Example 1.10.9. Consider the following monadic boolean algebra $A$

where the operators $\exists$ and $\forall$ are given in the table

| $x$ | 0 | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ | $i$ | $j$ | $k$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\exists x$ | 0 | $a_{1}$ | $a_{2}$ | $f$ | $f$ | $b$ | $j$ | $k$ | $k$ | $f$ | $j$ | 1 | 1 | $j$ | $k$ | 1 |
| $\forall x$ | 0 | $a_{1}$ | $a_{2}$ | 0 | 0 | $b$ | $a_{1}$ | $a_{2}$ | $a_{2}$ | $f$ | $a_{1}$ | $b$ | $b$ | $j$ | $k$ | 1 |

then the elements of $\mathcal{L}(A)$ are $0=C(0)=\{0\}, a=C\left(a_{1}\right)=\left\{a_{1}\right\}, b=C(b)=$ $\{b\}, c=C\left(a_{2}\right)=\left\{a_{2}\right\}, j=C(j)=\{j\}, k=C(k)=\{k\}, f=C(f)=\{f\}$,
$1=C(1)=\{1\}$ y $e=C\left(a_{3}\right)=\left\{a_{3}, a_{4}\right\}, d=C(c)=\{c, g\}, g=C(d)=$ $\{d, e\}, h=C(h)=\{h, i\}$. So the Hasse diagram of $\mathcal{L}(A)$ is the following:

and the operations $\sim$ and $\nabla$ are given by:

| $x$ | 0 | $a$ | $b$ | $c$ | $d$ | $e$ | $g$ | $h$ | $j$ | $f$ | $k$ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sim x$ | 1 | $k$ | $f$ | $j$ | $g$ | $h$ | $d$ | $e$ | $c$ | $b$ | $a$ | 0 |
| $\nabla x$ | 0 | $a$ | $b$ | $c$ | $j$ | $f$ | $k$ | 1 | $j$ | $f$ | $k$ | 1 |

Remark 1.10.10. The monadic boolean algebra above is the monadic boolean algebra with a free generator [22], [64] and $\mathcal{L}(A)$ is, as we shall see later on, the Eukasiewicz algebra with a free generator. This example leads us to conjecture that:

If $M(G)$ is monadic boolean algebra with a set $G$ of free generators then $\mathcal{L}(M(G))$ is the Lukasiewicz algebra with a set of free generators with the same cardinality as $G$.

We shall see later that this is true only if $G$ is a finite set with a single element.

### 1.11. Subalgebras

The concept of subalgebra allows to obtain new Łukasiewicz algebras from a given Lukasiewicz algebra, according to this definition: A non-empty part $S$ of a Eukasiewicz algebra $A$ is said to be a L-subalgebra of $A$ if it is invariant with respect to the operations $\sim, \nabla$ and $\vee$.

Lemma 1.11.1. Every L-subalgebra of a Eukasiewicz algebra is a Eukasiewicz algebra.

It is easy to check that an $L$-subalgebra of $A$ may be defined as a non-empty part $S$ of $A$ that is invariant with respect to any of the following groups of operations: $(1) \sim, \nabla, \wedge,(2) \sim, \Delta, \vee,(3) \sim, \Delta, \wedge$.

For that it is enough to consider that $\nabla x=\sim \Delta \sim x, \Delta x=\sim \nabla \sim x$ and the De Morgan laws. It is clear that if $S$ is an $L$-subalgebra, then $0,1 \in S$.

Therefore if $S$ is an $L$-subalgebra de $A$ we have:

$$
\{0,1\} \subseteq S \subseteq A
$$

It is clear that the intersection of $L$-subalgebras of $A$ is an $L$-subalgebra of $A$. The notion of $L$-subalgebra generated by a part $G$ of an algebra $B$, which we will denote by $L S(G)$, is defined as usual and one proves that $L S(G)$ is the least $L$-subalgebra of $A$ containing $G$. It is clear that $L S(\emptyset)=\{0,1\}$. If $L S(G)=A$, then $G$ is said to be a set of generators of $A$.

If $G \subseteq A$ and we denote with $\mathcal{F} P(G)$ the family of all the finite parts of $G$, then:

Lemma 1.11.2. $L S(G)=\bigcup\{L S(F): F \in \mathcal{F} P(G)\}$.
Proof. Let $X=\bigcup\{L S(F): F \in \mathcal{F} P(G)\}$. If $F \subseteq G$, since $G \subseteq L S(G)$, then $F \subseteq L S(G)$ and therefore $L S(F) \subseteq L S(G)$ for all subsets of $G$, in particular for all $F \in \mathcal{F} P(G)$, so: (i) $X \subseteq L S(G)$. We prove now that (ii) $L S(G) \subseteq X$. In order to do that, we prove first (1) $G \subseteq X$ and (2) $X$ is an $L$-subalgebra of $A$.
(1) Let $g \in G$ then $\{g\} \subseteq L S(\{g\}) \subseteq X$, and therefore $G=\bigcup_{g \in G}\{g\} \subseteq X$.
(2) Since $0,1 \in L S(F)$ for all $F \in \mathcal{F} P(G)$, then $0,1 \in X$. Let $x, y \in X$ so $x \in L S\left(F_{1}\right), y \in L S\left(F_{2}\right)$ where $F_{1}, F_{2} \in \mathcal{F} P(G)$, therefore $F_{1} \cup F_{2} \in \mathcal{F} P(G)$. From $F_{1} \subseteq F_{1} \cup F_{2}$ and $F_{2} \subseteq F_{1} \cup F_{2}$ it follows that $L S\left(F_{1}\right) \subseteq L S\left(F_{1} \cup F_{2}\right)$ and $L S\left(F_{2}\right) \subseteq L S\left(F_{1} \cup F_{2}\right)$, then $x, y \in L S\left(F_{1} \cup F_{2}\right)$ and therefore $x \wedge y, x \vee y \in$ $L S\left(F_{1} \cup F_{2}\right) \subseteq X$. It is clear that if $x \in X$ then $\sim x, \nabla x \in X$.

If $G$ has a single element $G=\{g\}$, we write $L S(g)$ instead $L S(\{g\})$ and if $G=Y \cup\{x\}$ we write $L S(Y, x)$ instead of $L S(Y \cup\{x\})$.

Notice that if $G=\{g\}$ then
$0,1, g, \sim g, g \wedge \sim g, \nabla(g \wedge \sim g), \nabla g, \nabla \sim g, \Delta g, \Delta \sim g, g \vee \sim g, \Delta(g \vee \sim g) \in L S(g)$.
Further on we will see that if $G=\{g\}$ then $N[L S(g)] \leq 12$.
Professor A. Monteiro, posed the problem of finding a "simple" expression for the elements of $L S(S, g)$.

Lemma 1.11.3. (L. Monteiro) If $A$ is a Eukasiewicz algebra, $S$ an L-subalgebra of $A$, and $g \in A$, then
$L S(S, g)=\left\{\left(s_{1} \wedge \Delta g\right) \vee\left(s_{2} \wedge \Delta \sim g\right) \vee\left(s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(s_{4} \wedge g \wedge \sim g\right): s_{1}, s_{2}, s_{3}, s_{4} \in S\right\}$.
Proof. Let
$S_{0}=\left\{\left(s_{1} \wedge \Delta g\right) \vee\left(s_{2} \wedge \Delta \sim g\right) \vee\left(s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(s_{4} \wedge g \wedge \sim g\right): s_{1}, s_{2}, s_{3}, s_{4} \in S\right\}$.
$\frac{\text { (i) } S_{0} \subseteq L S(S, g) .}{\text { Indeed, if } y \in S_{0}}$, then

$$
\text { (1) } y=\left(s_{1} \wedge \Delta g\right) \vee\left(s_{2} \wedge \Delta \sim g\right) \vee\left(s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(s_{4} \wedge g \wedge \sim g\right)
$$

where (2) $s_{1}, s_{2}, s_{3}, s_{4} \in S$. From (2) it follows that (3) $s_{1}, s_{2}, s_{3}, s_{4} \in S \cup\{g\} \subseteq$ $L S(S, g)$. Since $g \in S \cup\{g\} \subseteq L S(S, g)$ then (4) $\Delta g, \Delta \sim g, \nabla g \wedge \nabla \sim g, g \wedge \sim$
$g \in L S(S, g)$. From (3), (4) and (1) it follows that $y \in L S(S, g)$.
(ii) $L S(S, g) \subseteq S_{0}$.

We shall prove that:
(iii) $S \cup\{g\} \subseteq S_{0}$, and (iv) $S_{0}$ is an $L$-subalgebra of $L$.

We begin by noticing that since:
$\Delta g \vee \Delta \sim g \vee(\nabla g \wedge \nabla \sim g) \vee(g \wedge \sim g)=\Delta g \vee \Delta \sim g \vee(\nabla g \wedge \nabla \sim g)=$
$(\Delta g \vee \Delta \sim g \vee \nabla g) \wedge(\Delta g \vee \Delta \sim g \vee \nabla \sim g)=1 \wedge 1=1$, then for all $x \in A$,
we have that

$$
x=x \wedge 1=(x \wedge \Delta g) \vee(x \wedge \Delta \sim g) \vee(x \wedge \nabla g \wedge \nabla \sim g) \vee(x \wedge g \wedge \sim g)
$$

thus if $s \in S$ we have that $s \in S_{0}$ and therefore (1) $S \subseteq S_{0}$. Since

$$
\begin{aligned}
& (1 \wedge \Delta g) \vee(0 \wedge \Delta \sim g) \vee(0 \wedge \nabla g \wedge \nabla \sim g) \vee(1 \wedge g \wedge \sim g)= \\
& \Delta g \vee(g \wedge \sim g)=(\Delta g \vee g) \wedge(\Delta g \vee \sim g)=g \wedge(g \vee \sim g)=g
\end{aligned}
$$

then (2) $g \in S_{0}$. From (1) and (2), (iii) follows. Let us prove (iv) next.
Let $x, y \in S_{0}$, this is

$$
x=\left(s_{1} \wedge \Delta g\right) \vee\left(s_{2} \wedge \Delta \sim g\right) \vee\left(s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(s_{4} \wedge g \wedge \sim g\right)
$$

with $s_{1}, s_{2}, s_{3}, s_{4} \in S$ and

$$
y=\left(t_{1} \wedge \Delta g\right) \vee\left(t_{2} \wedge \Delta \sim g\right) \vee\left(t_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(t_{4} \wedge g \wedge \sim g\right)
$$

with $t_{1}, t_{2}, t_{3}, t_{4} \in S$ so

$$
x \vee y=\left(v_{1} \wedge \Delta g\right) \vee\left(v_{2} \wedge \Delta \sim g\right) \vee\left(v_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(v_{4} \wedge g \wedge \sim g\right)
$$

where $v_{i}=s_{i} \vee t_{i} \in S$ for $i=1,2,3,4$, so $x \vee y \in S_{0}$.
From $x \in S_{0}$ it follows that
$\nabla x=\left(\nabla s_{1} \wedge \Delta g\right) \vee\left(\nabla s_{2} \wedge \Delta \sim g\right) \vee\left(\nabla s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(\nabla s_{4} \wedge \nabla g \wedge \nabla \sim g\right)=$
$\left(\nabla s_{1} \wedge \Delta g\right) \vee\left(\nabla s_{2} \wedge \Delta \sim g\right) \vee\left(\left(\nabla s_{3} \vee \nabla s_{4}\right) \wedge \nabla g \wedge \nabla \sim g\right) \vee(0 \wedge g \wedge \sim g)$
and since $\nabla s_{i} \in S$ for $i=1,2,3,4$ and $0 \in S$ it follows that $\nabla x \in S_{0}$.
From $x \in S_{0}$ it follows that

$$
\sim x=\left(\sim s_{1} \vee \nabla \sim g\right) \wedge\left(\sim s_{2} \vee \nabla g\right) \wedge\left(\sim s_{3} \vee \Delta \sim g \vee \Delta g\right) \wedge\left(\sim s_{4} \vee g \vee \sim g\right)
$$

To simplify the notation we write $\sim s_{i}=b_{i}$ for $i=1,2,3,4$, then:

$$
\sim x=\left(b_{1} \vee \nabla \sim g\right) \wedge\left(b_{2} \vee \nabla g\right) \wedge\left(b_{3} \vee \Delta \sim g \vee \Delta g\right) \wedge\left(b_{4} \vee g \vee \sim g\right)
$$

Let

$$
y=\left(b_{1} \vee \nabla \sim g\right) \wedge\left(b_{3} \vee \Delta \sim g \vee \Delta g\right)
$$

and

$$
z=\left(b_{2} \vee \nabla g\right) \wedge\left(b_{4} \vee g \vee \sim g\right)
$$

Then:

$$
\begin{gathered}
y=\left(b_{1} \wedge b_{3}\right) \vee\left(b_{1} \wedge \Delta \sim g\right) \vee\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee(\nabla \sim g \wedge \Delta \sim g) \vee(\nabla \sim g \wedge \Delta g)= \\
\left(b_{1} \wedge b_{3}\right) \vee\left(b_{1} \wedge \Delta \sim g\right) \vee\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g= \\
\left(b_{1} \wedge b_{3}\right) \vee\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g= \\
{\left[\left(b_{1} \wedge b_{3}\right) \wedge(\Delta g \vee \nabla \sim g)\right] \vee\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g=} \\
\left(b_{1} \wedge b_{3} \wedge \Delta g\right) \vee\left(b_{1} \wedge b_{3} \wedge \nabla \sim g\right) \vee\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g=
\end{gathered}
$$

$$
\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g
$$

and

$$
\begin{gathered}
z=\left(b_{2} \wedge b_{4}\right) \vee\left(b_{2} \wedge g\right) \vee\left(b_{2} \wedge \sim g\right) \vee\left(\nabla g \wedge b_{4}\right) \vee(\nabla g \wedge g) \vee(\nabla g \wedge \sim g)= \\
\left(b_{2} \wedge b_{4}\right) \vee\left(b_{2} \wedge g\right) \vee\left(b_{2} \wedge \sim g\right) \vee\left(\nabla g \wedge b_{4}\right) \vee g \vee(g \wedge \sim g)= \\
\left(b_{2} \wedge b_{4}\right) \vee\left(b_{2} \wedge \sim g\right) \vee\left(\nabla g \wedge b_{4}\right) \vee g= \\
{\left[\left(b_{2} \wedge b_{4}\right) \wedge(\sim g \vee \nabla g)\right] \vee\left(b_{2} \wedge \sim g\right) \vee\left(\nabla g \wedge b_{4}\right) \vee g=} \\
\left.\left(b_{2} \wedge b_{4} \wedge \sim g\right) \vee\left(b_{2} \wedge b_{4} \wedge \nabla g\right)\right] \vee\left(b_{2} \wedge \sim g\right) \vee\left(\nabla g \wedge b_{4}\right) \vee g= \\
\left(b_{2} \wedge \sim g\right) \vee\left(b_{4} \wedge \nabla g\right) \vee g
\end{gathered}
$$

Then

$$
\begin{gathered}
\sim x=y \wedge z=\left[\left(b_{1} \wedge \Delta g\right) \vee\left(\nabla \sim g \wedge b_{3}\right) \vee \Delta \sim g\right] \wedge\left[\left(b_{2} \wedge \sim g\right) \vee\left(b_{4} \wedge \nabla g\right) \vee g\right]= \\
\left(b_{1} \wedge \Delta g \wedge b_{2} \wedge \sim g\right) \vee\left(b_{1} \wedge \Delta g \wedge b_{4} \wedge \nabla g\right) \vee\left(b_{1} \wedge \Delta g \wedge g\right) \vee \\
\left(\nabla \sim g \wedge b_{3} \wedge b_{2} \wedge \sim g\right) \vee\left(\nabla \sim g \wedge b_{3} \wedge b_{4} \wedge \nabla g\right) \vee\left(\nabla \sim g \wedge b_{3} \wedge g\right) \vee \\
\left(\Delta \sim g \wedge b_{2} \wedge \sim g\right) \vee\left(\Delta \sim g \wedge b_{4} \wedge \nabla g\right) \vee(\Delta \sim g \wedge g)= \\
\left(b_{1} \wedge \Delta g \wedge b_{4}\right) \vee\left(b_{1} \wedge \Delta g\right) \vee\left(b_{3} \wedge b_{2} \wedge \sim g\right) \vee \\
\left(\nabla \sim g \wedge b_{3} \wedge b_{4} \wedge \nabla g\right) \vee\left(\sim g \wedge b_{3} \wedge g\right) \vee\left(\Delta \sim g \wedge b_{2}\right)= \\
\left(b_{1} \wedge \Delta g\right) \vee\left(b_{3} \wedge b_{2} \wedge \sim g\right) \vee\left(\nabla \sim g \wedge b_{3} \wedge b_{4} \wedge \nabla g\right) \vee\left(\sim g \wedge b_{3} \wedge g\right) \vee\left(\Delta \sim g \wedge b_{2}\right)= \\
\left(b_{1} \wedge \Delta g\right) \vee\left[\left(b_{3} \wedge b_{2} \wedge \sim g\right) \wedge(\Delta \sim g \vee \nabla g)\right] \vee \\
\left(b_{3} \wedge b_{4} \wedge \nabla \sim g \wedge \nabla g\right) \vee\left(b_{3} \wedge \sim g \wedge g\right) \vee\left(b_{2} \wedge \Delta \sim g\right)= \\
\left(b_{1} \wedge \Delta g\right) \vee\left(b_{3} \wedge b_{2} \wedge \sim g \wedge \Delta \sim g\right) \vee\left(b_{3} \wedge b_{2} \wedge \sim g \wedge \nabla g\right) \vee \\
\left(b_{3} \wedge b_{4} \wedge \nabla \sim g \wedge \nabla g\right) \vee\left(b_{3} \wedge \sim g \wedge g\right) \vee\left(b_{2} \wedge \Delta \sim g\right)= \\
\left(b_{1} \wedge \Delta g\right) \vee\left(b_{3} \wedge b_{2} \wedge \Delta \sim g\right) \vee\left(b_{3} \wedge b_{2} \wedge \sim g \wedge g\right) \vee \\
\left(b_{3} \wedge b_{4} \wedge \nabla \sim g \wedge \nabla g\right) \vee\left(b_{3} \wedge \sim g \wedge g\right) \vee\left(b_{2} \wedge \Delta \sim g\right)= \\
\left.\left(b_{1} \wedge \Delta g\right) \vee\left[\left(\left(b_{3} \wedge b_{2}\right) \vee b_{2}\right) \wedge \Delta \sim g\right)\right] \vee\left[\left(\left(b_{3} \wedge b_{2}\right) \vee b_{3}\right) \wedge \sim g \wedge g\right] \vee\left(b_{3} \wedge b_{4} \wedge \nabla \sim g \wedge \nabla g\right)= \\
\left(b_{1} \wedge \Delta g\right) \vee\left(b_{2} \wedge \Delta \sim g\right) \vee\left(b_{3} \wedge \sim g \wedge g\right) \vee\left(b_{3} \wedge b_{4} \wedge \nabla \sim g \wedge \nabla g\right) .
\end{gathered}
$$

Thus since $b_{1}, b_{2}, b_{3}, b_{4} \in S$ we have that $\sim x \in S_{0}$.
Let $A$ be a Łukasiewicz algebra, $S$ an $L$-subalgebra of $A$ and $g \in A$.

1) If $g \in B(A)$ then $L S(S, g)=\left\{\left(s_{1} \wedge g\right) \vee\left(s_{2} \wedge \sim g\right): s_{1}, s_{2} \in S\right\}$.
2) If $\Delta g=0$, then $g \leq \sim g$ and:

$$
L S(S, g)=\left\{\left(s_{1} \wedge \Delta \sim g\right) \vee\left(s_{2} \wedge \nabla g\right) \vee\left(s_{3} \wedge g\right): s_{1}, s_{2}, s_{3} \in S\right\}
$$

3) If $c$ is a center of $A$, then since $\Delta \sim c=\Delta c=0, \nabla c \wedge \nabla \sim c=1 \wedge \nabla c=1$ and $c \wedge \sim c=c$ it follows that: $L S(S, c)=\left\{s_{1} \vee\left(s_{2} \wedge c\right): s_{1}, s_{2} \in S\right\}$.
We present now a method for finding $L S(G)$ when $G$ is a finite, non-empty set of a Łukasiewicz algebra $A$.

Let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, consider:

- $S_{1}=L S\left(g_{1}\right)$
- $S_{2}=L S\left(S_{1}, g_{2}\right)$
- .................
- $S_{n}=L S\left(S_{n-1}, g_{n}\right)$

We prove that $S_{n}=L S(G)$. Indeed, from the previous construction it follows that:

$$
\left\{g_{1}\right\} \subseteq S_{1} \subseteq S_{1} \cup\left\{g_{2}\right\} \subseteq L S\left(S_{1}, g_{2}\right)=S_{2} \subseteq \ldots \subseteq S_{n}
$$

therefore (1) $G \subseteq S_{n}$ and since by construction (2) $S_{n}$ is an $L$-subalgebra, from (1) and (2) it follows that $L S(G) \subseteq S_{n}$. From $g_{1} \in G$ it follows that $S_{1} \subseteq L S(G)$, so $S_{1} \cup\left\{g_{2}\right\} \subseteq L S(G)$, therefore $S_{2}=L S\left(S_{1}, g_{2}\right) \subseteq L S(G), \ldots, S_{n}=L S\left(S_{n-1}, g_{n}\right) \subseteq$ $L S(G)$.

We know that if $b \in B(L)$ then $\sim b$ is the boolean complement of $b$. If $b \in B(L)$, we denote with $b^{*}$, any of the elements $b$ or $\sim b$.

Lemma 1.11.4. If $L$ is a Eukasiewicz algebra and $X$ a finite subset of $B(L)$, then $S B(X)=L S(X)$.

Proof. If $X=\emptyset$, then $S B(\emptyset)=\{0,1\}=L S(\emptyset)$.
Assume that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Since $S B(X)$ is an $L$-subalgebra of $L$ such that $X \subseteq S B(X)$ then $L S(X) \subseteq S B(X)$. Let $b \in S B(X)$, if $b=0$ then evidently $b \in L S(X)$. If $b \neq 0$ then it is well known ${ }^{5}$ that $b=\bigvee_{k=1}^{r} m_{k}$, where $m_{k}=\bigwedge_{i=1}^{n} x_{i}^{*}$. Since $x_{i}^{*} \in L S(X)$ for all $i, 1 \leq i \leq n$, then $m_{k} \in L S(X)$ for all $k, 1 \leq k \leq r$, so $b \in L S(X)$.

Corollary 1.11.5. If $A$ is a Eukasiewicz algebra, and $X$ a finite subset of $A$, then
$S B(\triangle X \cup \nabla X)=L S(\triangle X \cup \nabla X)$.
Proof. This is a consequence of Lemma 1.11.4, since $\triangle X \cup \nabla X$ is a finite subset of $B(A)$.

Lemma 1.11.6. If $A$ is a Eukasiewicz algebra, $g \in A$ and $S$ an L-subalgebra of $A$ such that $\nabla g, \sim \triangle g \in B(S)$, then $B(L S(S, g))=B(S)$.

Proof. From the hypothesis we deduce that:

$$
\text { (1) } \triangle g, \triangle \sim g, \nabla(g \wedge \sim g) \in B(S) \text {. }
$$

If $z \in B(L S(S, g))=L S(S, g) \cap B(L)$, then $\Delta z=z$, and $z=\left(s_{1} \wedge \Delta g\right) \vee\left(s_{2} \wedge \Delta \sim g\right) \vee\left(s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(s_{4} \wedge g \wedge \sim g\right)$, where $s_{1}, s_{2}, s_{3}, s_{4} \in S$, so
$z=\Delta z=\left(\Delta s_{1} \wedge \Delta g\right) \vee\left(\Delta s_{2} \wedge \Delta \sim g\right) \vee\left(\Delta s_{3} \wedge \nabla g \wedge \nabla \sim g\right) \vee\left(\Delta s_{4} \wedge \Delta g \wedge \Delta \sim g\right)$.
From $\Delta s_{i} \in B(S)$, for $i=1,2,3,4$, we deduce, keeping in mind (1), that $z \in B(S)$.

Since $S \subseteq L S(S, g)$, we know that $B(S)=S \cap B(L) \subseteq L S(S, g) \cap B(L)=$ $B(L S(S, g))$.

[^2]Lemma 1.11.7. If $A$ is a Eukasiewicz algebra, $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \subseteq A$ and $L_{0}=S B(\triangle G \cup \nabla G), L_{1}=L S\left(L_{0}, g_{1}\right), L_{2}=L S\left(L_{1}, g_{2}\right), \ldots, L_{n}=L S\left(L_{n-1}, g_{n}\right)$ then: $L_{n}=L S(G)$ and $B(L S(G))=S B(\triangle G \cup \nabla G)$.

Proof. By construction we have $L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n}$, and $g_{i} \in L_{i}, 1 \leq i \leq n$, so $G \subseteq L_{n}$ and therefore $L S(G) \subseteq L_{n}$.

Since $\triangle G, \nabla G \subseteq L S(G)$, then $\triangle G \cup \nabla G \subseteq L S(G)$, so: (1) $L S(\triangle G \cup \nabla G) \subseteq$ $L S(G)$.

By hypothesis $G$ is a finite subset, then by the Corollary 1.11.5:
(2) $S B(\triangle G \cup \nabla G)=L S(\triangle G \cup \nabla G)$.

From (1) and (2) we have $L_{0}=S B(\triangle G \cup \nabla G) \subseteq L S(G)$, then since $g_{1} \in$ $L S(G)$ we have $L_{1}=L S\left(L_{0}, g_{1}\right) \subseteq L S(G)$. From $g_{i} \in L S(G)$, and $L_{i-1} \subseteq$ $L S(G), 2 \leq i \leq n$, we have $L_{i}=L S\left(L_{i-1}, g_{i}\right) \subseteq L S(G), 2 \leq i \leq n$. This proves that $L_{n}=L S(G)$.

Since $\nabla g_{i}, \sim \triangle g_{i} \in B\left(L_{0}\right)=L_{0} \subseteq L_{1} \subseteq \cdots \subseteq L_{n}$, for $i=1,2, \ldots, n$, then by Lemma 1.11.6, $B\left(L_{1}\right)=B\left(L S\left(L_{0}, g_{1}\right)\right)=B\left(L_{0}\right)=L_{0}$, and therefore $B\left(L_{j}\right)=$ $B\left(L S\left(L_{j-1}, g_{j}\right)\right)=B\left(L_{j-1}\right)=L_{0}, 2 \leq j \leq n$. Thus $B(L S(G))=L_{0}=S B(\Delta G \cup$ $\nabla G)$.

Lemma 1.11.8. (A. Monteiro [36]) If $A$ is a Eukasiewicz algebra, $G \subseteq A$, and $L^{\prime}=L S(G)$, then the subset $\triangle G \cup \nabla G$ of $B(A)$ verifies: $S B(\triangle G \cup \nabla G)=B\left(L^{\prime}\right)$.

Proof. In 1994, L. Monteiro, obtained the following proof, indicated in [48], and which is simpler than the one by A. Monteiro.

Let $G$ be a subset of the Łukasiewicz algebra $A$, then we saw that:

$$
L S(G)=\bigcup\left\{L S\left(G^{\prime}\right): G^{\prime} \in \mathcal{F} P(G)\right\}
$$

We shall prove that: $B(L S(G))=S B(\triangle G \cup \nabla G)$. Since $\triangle G \cup \nabla G \subseteq B(A)$ and $\triangle G \cup \nabla G \subseteq L S(G)$, then $\triangle G \cup \nabla G \subseteq L S(G) \cap B(A)=B(L S(G))$, so $S B(\triangle G \cup \nabla G) \subseteq B(L S(G))$. If $b \in B(L S(G))$ then $b=\triangle b$ and $b \in L S(G)$, so $b \in L S\left(G^{\prime}\right)$, where $G^{\prime}$ is a finite subset of $G$, then by Lemma 1.11.7,

$$
B\left(L S\left(G^{\prime}\right)\right)=S B\left(\triangle G^{\prime} \cup \nabla G^{\prime}\right) \subseteq S B(\triangle G \cup \nabla G)
$$

and since $b \in B\left(L S\left(G^{\prime}\right)\right)$ we have that $b \in S B(\triangle G \cup \nabla G)$.
Corollary 1.11.9. If $G$ is a set of generators of the Eukasiewicz algebra $A$, this is $L S(G)=A$, then $B(A)=S B(\triangle G \cup \nabla G)$.

Lemma 1.11.10. (L. Monteiro, [61]) If e is the axis of a Eukasiewicz algebra $L, S$ an L-subalgebra of $L$ such that $e \in S$, and $x \in L$ verifies: $\Delta x, \nabla x \in S$ then $x \in S$.

Proof. It follows immediately from the hypothesis and from the fact that in an algebra with axis each element $x$ can be written as $x=(\Delta x \vee e) \wedge \nabla x$.

If $L$ is a Lukasiewicz algebra with axis $e$ and $S$ an $L$-subalgebra of $L$ such that (1) for every $x \in L \Delta x, \nabla x \in S$ then not necessarily $e \in S$. Indeed, consider the $L$-subalgebra $B(L)$ of the Lukasiewicz algebra $L$ from example 1.3.1, which has axis $e$ and verifies condition (1), while $e \notin S$.

Lemma 1.11.11. (L. Monteiro, [61]) If $L$ is a Łukasiewicz algebra with center $c$ and $S$ is an $L$-subalgebra of $L$ then the following conditions are equivalent:
a) $S$ verifies if $\Delta x, \nabla x \in S$, then $x \in S$.
b) $c \in S$.

Proof. a) implies b): Since $\Delta c=0$ and $\nabla c=1$ then by a) $c \in S$.
b) implies a): Since $c$ is an axis of $L$ belonging to $S$, then by the preceding lemma, it clear that a) holds.

Lemma 1.11.12. (L. Monteiro, [61]) If $L$ is a Eukasiewicz algebra with axis e and $S$ is an L-subalgebra of $L$ verifying (1) $B(L) \subseteq S$ and (2) $e \in S$, then $S=L$.

Proof. Given $x \in L$ then $\Delta x, \nabla x \in B(L)$ so, by (1) and (2) we have that $x=(\Delta x \vee e) \wedge \nabla x \in S$.

Lemma 1.11.13. (L. Monteiro, [61]) If $L$ is a Łukasiewicz algebra with center $c$ and $S$ is an L-subalgebra of $L$ then $L S(S, c)=L$ if and only if $B(L) \subseteq S$.

Proof. If $L S(S, c)=L$, since $L S(S, c)=\left\{x \in L: x=s_{1} \wedge\left(s_{2} \vee c\right)\right.$, where $s_{1}$, $\left.s_{2} \in S\right\}$ then if $b \in B(L) \subseteq L=L S(S, c)$ we have that $b=s_{1} \wedge\left(s_{2} \vee c\right)$, with $s_{1}, s_{2} \in S$ so $b=\Delta b=\Delta\left(s_{1} \wedge\left(s_{2} \vee c\right)\right)=\Delta s_{1} \wedge\left(\Delta s_{2} \vee \Delta c\right)=\Delta s_{1} \wedge\left(\Delta s_{2} \vee 0\right)=$ $\Delta s_{1} \wedge \Delta s_{2} \in S$.

If $B(L) \subseteq S \subseteq L S(S, c)$, since $c \in L S(S, c)$ then by Lemma 1.11.12, $L S(S, c)=$ $L$.

In the IX Latin American Symposium on Mathematical Logic held in the Universidad Nacional del Sur in 1992, M. Abad, L. Monteiro, S. Savini and J. Sewald [5] presented their determination of the number of subalgebras of a finite non trivial Łukasiewicz algebra $L$, the number of subisomorphic algebras to a given subalgebra of $L$, the number of non isomorphic subalgebras of $L$, and a method for constructing all the subalgebras of $L$.

### 1.12. Complete Łukasiewicz algebras

A Łukasiewicz algebra $L$ is said to be complete if the underlying lattice $L$ is complete.

Lemma 1.12.1. (L.Monteiro, [61]) If $L$ is a Lukasiewicz algebra with axis e such that $B(L)$ is a complete boolean algebra, then $L$ is complete.

Proof. Given a subset $F=\left\{a_{i}\right\}_{i \in I} \subseteq L$ consider these subsets of $B(L)$ :

$$
F_{0}=\left\{\Delta a_{i}\right\}_{i \in I} \quad \text { and } \quad F_{1}=\left\{\nabla a_{i}\right\}_{i \in I} .
$$

Since $B(L)$ is complete, there exist the elements:

$$
\text { (1) } a_{0}=\bigwedge_{i \in I} \Delta a_{i} \in B(L) \quad \text { and } \quad \text { (2) } a_{1}=\bigwedge_{i \in I} \nabla a_{i} \in B(L) \text {. }
$$

Consider the element (3) $a=\left(a_{0} \vee e\right) \wedge a_{1}$. We shall prove that $a$ is the infimum of the set $F$. From (3) it follows that (4) $a \leq a_{0} \vee e$ and (5) $a \leq a_{1}$.

From (4) we obtain (6) $\Delta a \leq \Delta a_{0} \vee \Delta e=\Delta a_{0} \vee 0=\Delta a_{0}=\left(\right.$ by (1)) $=a_{0}$.

From (1) we get that (7) $a_{0} \leq \Delta a_{i}$ for all $i \in I$, so from (6) and (7) we have that (8) $\Delta a \leq \Delta a_{i}$ for all $i \in I$.

From (5) we get (9) $\nabla a \leq \nabla a_{1}=($ by (2) $)=a_{1}$. By (2) we have that (10) $a_{1} \leq \nabla a_{i}$ for all $i \in I$, so from (9) and (10) it follows that (11) $\nabla a \leq \nabla a_{i}$ for all $i \in I$.

From (8) and (11) we conclude, by the corollary to Moisil's determination principle, (Corollary 1.4.2) that $a \leq a_{i}$ for all $i \in I$.

We prove next that if $x \in L$ verifies $x \leq a_{i}$, for all $i \in I$, then $x \leq a$.
From $x \leq a_{i}$, for all $i \in I$, it follows that (12) $\Delta x \leq \Delta a_{i}$, for all $i \in I$, and (13) $\nabla x \leq \nabla a_{i}$, for all $i \in I$.

Since $\Delta x, \nabla x \in B(L)$ then from (12) and (1) it follows that (14) $\Delta x \leq a_{0}$ and therefore $\Delta x \vee e \leq a_{0} \vee e$.

By (13) and (2) we have (15) $\nabla x \leq a_{1}$ so from (14) and (15) it follows that $x=(\Delta x \vee e) \wedge \nabla x \leq\left(a_{0} \vee e\right) \wedge a_{1}=a$.

Corollary 1.12.2. If $L$ is a Eukasiewicz algebra with center such that $B(L)$ is a complete boolean algebra then $L$ is complete.

Since every Łukasiewicz algebra is in particular a De Morgan algebra then
Lemma 1.12.3. If $L$ is a Eukasiewicz algebra and there exists the supremum (infimum) of a non-empty family $\left\{a_{i}\right\}_{i \in I}$ of elements of $L$ then there also exists the infimum (the supremum) of the family $\left\{\sim a_{i}\right\}_{i \in I}$ and furthermore

$$
\bigwedge_{i \in I} \sim a_{i}=\sim \bigvee_{i \in I} a_{i}, \quad \text { and } \quad \bigvee_{i \in I} \sim a_{i}=\sim \bigwedge_{i \in I} a_{i}
$$

Lemma 1.12.4. If $L$ is a Eukasiewicz algebra, and there exists $a=\bigvee_{i \in I} a_{i}$ then there exists $\bigvee_{i \in I} \nabla a_{i}$ and $\nabla a=\bigvee_{i \in I} \nabla a_{i}$.

Proof. From $a=\bigvee_{i \in I} a_{i}$ it follows that $a_{i} \leq a$ for all $i \in I$ so:
(i) $\nabla a_{i} \leq \nabla a$ for all $i \in I$.

We prove now that (ii) If (1) $\nabla a_{i} \leq x$ for all $i \in I$ then $\nabla a \leq x$.
From (1) it follows that $\nabla a_{i} \leq \Delta x$ for all $i \in I$ and since $a_{i} \leq \nabla a_{i}$ for all $i \in I$, we have that $a_{i} \leq \Delta x$ for all $i \in I$ and therefore $a=\bigvee_{i \in I} a_{i} \leq \Delta x$, so $\nabla a \leq \Delta x \leq x$. From (i) and (ii) it follows that $\nabla a=\bigvee_{i \in I} \nabla a_{i}$.

Corollary 1.12.5. If $L$ is a Lukasiewicz algebra, $\left\{b_{i}\right\}_{i \in I} \subseteq B(L)$ and there exists $b=\bigvee_{i \in I} b_{i}$ then $b \in B(L)$.

Proof. $\nabla b=\nabla\left(\bigvee_{i \in I} b_{i}\right)=($ by Lemma 1.12.4 $)=\bigvee_{i \in I} \nabla b_{i}=\bigvee_{i \in I} b_{i}=b$.
Corollary 1.12.6. (L. Monteiro, [57]) If $L$ is a complete Łukasiewicz algebra, then $B(L)$ is a complete boolean algebra.

Lemma 1.12.7. (A. Monteiro, [44]) If $L$ is a Lukasiewicz algebra, and there exists $a=\bigvee_{i \in I} a_{i}$ and $\Delta a_{i}=0$ for all $i \in I$ then $\Delta a=0$.

Proof. By hypothesis $\Delta a_{i}=0$ for all $i \in I$, by Lemma 1.4.10 this is equivalent to $a_{i} \leq \sim a_{i}$ for all $i \in I$, then since every Lukasiewicz algebra is a Kleene algebra, we have that

$$
a_{i}=a_{i} \wedge \sim a_{i} \leq a_{j} \vee \sim a_{j}=\sim a_{j}, \text { for all } \quad i, j \in I,
$$

and therefore (1) $a=\bigvee_{i \in I} a_{i} \leq \sim a_{j}$ for all $j \in I$. By Lemma 1.12.3, we know that (2) $\sim a=\bigwedge_{i \in I} \sim a_{i}$. From (1) and (2) it follows that $a \leq \sim a$. Then, by Lemma 1.4.10, $\Delta a=0$.

Lemma 1.12.8. (A. Monteiro, [44]) If $L$ is a Łukasiewicz algebra, and there exists $a=\bigvee_{i \in I} a_{i}$ then there also exists $\bigvee_{i \in I} \Delta a_{i}$ and:

$$
\Delta\left(\bigvee_{i \in I} a_{i}\right)=\bigvee_{i \in I} \Delta a_{i}
$$

Proof. The proof below is due to L. Monteiro, [61]. See also A. Monteiro [45].

By hypothesis $a_{i} \leq a$ for all $i \in I$ so (i) $\Delta a_{i} \leq \Delta a$ for all $i \in I$. We prove next:
(ii) If $t \in L$ verifies $\Delta a_{i} \leq t$ for all $i \in I$, then $\Delta a \leq t$.
$\overline{\text { From (1) } \Delta a_{i} \leq t \text {, for all } i \in I \text { it follows that (2) } \Delta a_{i}} \leq \Delta t$, for all $i \in I$.
For each $i \in I$ let (3) $a_{i}^{\prime}=\sim \Delta t \wedge \Delta a \wedge a_{i}$, so by (i) and (2), we can deduce that:

$$
\Delta a_{i}^{\prime}=\sim \Delta t \wedge \Delta a \wedge \Delta a_{i}=\sim \Delta t \wedge \Delta a_{i} \leq \sim \Delta t \wedge \Delta t=0
$$

this is (4) $\Delta a_{i}^{\prime}=0$ for all $i \in I$.
By theorem 1.6.8, from (3) it follows that (5) $\bigvee_{i \in I} a_{i}^{\prime}=\bigvee_{i \in I}\left(\sim \Delta t \wedge \Delta a \wedge a_{i}\right)=$
$\sim \Delta t \wedge \Delta a \wedge\left(\bigvee_{i \in I} a_{i}\right)=\sim \Delta t \wedge \Delta a \wedge a=\sim \Delta t \wedge \Delta a$.
By Lemma 1.12.7, from (4) and (5) it follows that $\Delta\left(\bigvee_{i \in I} a_{i}^{\prime}\right)=0$, this is $\Delta(\sim$ $\Delta t \wedge \Delta a)=0$, so $\sim \Delta t \wedge \Delta a=0$ and therefore $\Delta a \leq \Delta t \leq t$.

As a consequence of the previous results we have
Lemma 1.12.9. If in a Lukasiewicz algebra $L$ there exists $\bigwedge_{i \in I} y_{i}$, then there also exist $\bigwedge_{i \in I} \nabla y_{i}, \bigwedge_{i \in I} \Delta y_{i}$ and furthermore

$$
\bigwedge_{i \in I} \nabla y_{i}=\nabla\left(\bigwedge_{i \in I} y_{i}\right) \quad \text { and } \quad \bigwedge_{i \in I} \Delta y_{i}=\Delta\left(\bigwedge_{i \in I} y_{i}\right)
$$

Given a Łukasiewicz algebra $L$, consider the set $A(L)=\{x \in L: \Delta x=0\}$, this is a non-empty set since $0 \in A(L)$.

Lemma 1.12.10. (A. Monteiro (1969)) If $L$ is a Lukasiewicz algebra with axis $e$, then $e$ is an upper bound of $A(L)$.

Proof. Since $L$ has axis then $y=(\Delta y \vee e) \wedge \nabla y$, for all $y \in L$. Let $x \in A(L)$, this is $\Delta x=0$, so $x=(\Delta x \vee e) \wedge \nabla x=(0 \vee e) \wedge \nabla x=e \wedge \nabla x \leq e$.

Lemma 1.12.11. (A. Monteiro (1969)) If $L$ is a Eukasiewicz algebra and $e \in A(L)$ is an upper bound of the set $A(L)$ then $e$ is an axis of $L$.

Proof. By hypothesis we have that (1) $\Delta e=0$ and (2) if $\Delta x=0$ then $x \leq e$. We prove now that:

$$
\text { (i) If } x \leq \sim \nabla e \text { then } \Delta x=x \text {, this is } x \in B(L) \text {. }
$$

If $x \leq \sim \nabla e$ then (3) $x \wedge \sim x \leq x \leq \sim \nabla e$. Since $\Delta(x \wedge \sim x)=0$ then by (2) it follows that (4) $x \wedge \sim x \leq e \leq \nabla e$. From (3) and (4) it follows that $x \wedge \sim x \leq \sim \nabla e \wedge \nabla e=0$, this is $x \wedge \sim x=0$ and therefore $x \vee \sim x=1$, which proves that $x \in B(L)$, this is $\Delta x=x$.

From $x \wedge \sim \nabla e \leq \sim \nabla e$ it follows by (i) that:

$$
\text { (ii) } \Delta(x \wedge \sim \nabla e)=x \wedge \sim \nabla e
$$

$$
\text { (iii) } x=\Delta x \vee(x \wedge \nabla e) \text {, for all } x \in L
$$

Indeed $x=x \wedge 1=x \wedge(\nabla e \vee \sim \nabla e)=(x \wedge \nabla e) \vee(x \wedge \sim \nabla e)=($ by $(i i))=$ $(x \wedge \nabla e) \vee(\Delta x \wedge \sim \nabla e)=(x \vee \Delta x) \wedge(x \vee \sim \nabla e) \wedge(\nabla e \vee \Delta x) \wedge 1=$ $x \wedge(x \vee \sim \nabla e) \wedge(\nabla e \vee \Delta x)=x \wedge(\nabla e \vee \Delta x)=(x \wedge \nabla e) \vee \Delta x$.

$$
\text { (iv) } \Delta x \vee(e \wedge \nabla x)=\Delta x \vee(x \wedge \nabla e) \text {, for all } x \in L
$$

This follows from considering (5) $\Delta(\Delta x \vee(e \wedge \nabla x))=\Delta x \vee(\Delta e \wedge \nabla x)=$ $\Delta x \vee(0 \wedge \nabla x)=\Delta x$.
(6) $\Delta(\Delta x \vee(x \wedge \nabla e))=\Delta x \vee(\Delta x \wedge \nabla x)=\Delta x$.
(7) $\nabla(\Delta x \vee(e \wedge \nabla x))=\Delta x \vee(\nabla e \wedge \nabla x)=\nabla(\Delta x \vee(x \wedge \nabla e))$.

From (5), (6) and (7), by Moisil's determination principle it follows that (iv) holds, and from (iii) and (iv) we have that

$$
\text { (8) } x=\Delta x \vee(e \wedge \nabla x) \text {, }
$$

From (1) and (8) it follows by Lemma 1.4.6 that $e$ is an axis of $L$.
Theorem 1.12.12. (A. Monteiro (1969)) Every complete Lukasiewicz algebra $L$ has an axis.

Proof. Let $A(L)=\left\{e_{i}\right\}_{i \in I}$, this is (1) $\Delta e_{i}=0$ for all $i \in I$. Since $L$ is a complete lattice then there exists (2) $e=\bigvee_{i \in I} e_{i}$. From (1) and (2) it follows by Lemma 1.12.7 that $\Delta e=\Delta\left(\bigvee_{i \in I} e_{i}\right)=\bigvee_{i \in I} \Delta e_{i}=0$. So $e \in A(L)$ and by (2), it is an upper bound for $A(L)$, and by the preceding Lemma $e$ is the axis of $L$.

Corollary 1.12.13. Every finite Eukasiewicz algebra has an axis.
We indicate now an example of a Lukasiewicz algebra without axis. Consider the set $\mathbb{N}$ of the natural numbers and the Lukasiewicz algebra $\mathbf{T}=\{0, c, 1\}$ from Example 1.2.3. Let $L=\mathbf{T}^{\mathbb{N}}$ be the set of all the functions from $\mathbb{N}$ to $\mathbf{T}$, algebrized componentwise. We denote with $\mathbf{0}$ the bottom element of this Łukasiewicz algebra, this is, $\mathbf{0}(x)=0$ for all $x \in \mathbb{N}$. Let $S$ be the set of all the functions $f: \mathbb{N} \rightarrow \mathbf{T}$ such that $f(x)=c$ for $x \in F \subset \mathbb{N}$, where $F$ is finite or empty. Clearly $S$ is an $L$-subalgebra of $L$.

Consider $A(S)=\{f \in S: \Delta f=\mathbf{0}\}$. Then $f \in A(S) \Longleftrightarrow f(x) \in\{0, c\}$ for all $x \in \mathbb{N}$. The set $A(S)$ does not have a top element. If $f \in A(S)$ then there exists a finite part $F \subset \mathbb{N}$ such that

$$
f(x)= \begin{cases}0 & \text { for } \quad x \notin F \\ c & \text { for } \quad x \in F\end{cases}
$$

Let $y \in \mathbb{N} \backslash F$ and $h: \mathbb{N} \rightarrow \mathbf{T}$ be defined by

$$
h(x)= \begin{cases}0 & \text { for } \quad x \notin F \cup\{y\} \\ c & \text { for } x \in F \cup\{y\} .\end{cases}
$$

Then $h \in A(S)$ and $f<h$, so $A(S)$ does not have a top element and therefore $S$ has no axis.

## CHAPTER 2

## Homomorphisms, deductive systems and quotients

### 2.1. Homomorphisms

Definition 2.1.1. A function $h$ from a Lukasiewicz algebra A to a Łukasiewicz algebra $A^{\prime}$ is said to be a homomorphism from $A$ to $A^{\prime}$, if the following conditions hold:

H1) $h(x \vee y)=h(x) \vee h(y)$,
H2) $h(\sim x)=\sim h(x)$,
H3) $h(\nabla x)=\nabla h(x)$.
If $h$ is surjective we say that $h$ is an epimorphism and if $h$ is bijective, we say that $h$ is an isomorphism.

We say that a Łukasiewicz algebra $A^{\prime}$ is a homomorphic image of a Łukasiewicz algebra $A$ if there exists an epimorphism from $A$ to $A^{\prime}$. If $h$ is one to one as well, we say that $A$ is isomorphic to $A^{\prime}$ and write $A \cong A^{\prime}$.

The next lemma is proved without difficulty.
Lemma 2.1.2. If $h: A \rightarrow A^{\prime}$ is a homomorphism then:
H4) $h(x \wedge y)=h(x) \wedge h(y)$,
H5) $h(1)=1$,
H6) $h(0)=0$,
H7) $h(x \rightarrow y)=h(x) \rightarrow h(y)$,
H8) $h(x \mapsto y)=h(x) \mapsto h(y)$,
H9) $h(x \Rightarrow y)=h(x) \Rightarrow h(y)$,
H10) $h(\Delta x)=\Delta h(x)$,
H11) $h(\partial x)=\partial h(x)$,
H12) $h($ Ext $x)=$ Ext $h(x)$
It is also easy to prove:
Lemma 2.1.3. If $L$ and $L^{\prime}$ are Eukasiewicz algebras and $h$ is a homomorphism from $L$ to $L^{\prime}$ then $h(B(L)) \subseteq B\left(L^{\prime}\right)$ and the restriction $h^{\prime}$ of $h$ to $B(L)$ is a boolean homomorphism from $B(L)$ to $B\left(L^{\prime}\right)$.

The main goal of this section is the determination of the homomorphic images of a Lukasiewicz algebra $L$ by means of an intrinsic construction on the algebra itself.

If $L$ is a Łukasiewicz algebra then $i d_{L}$ is a surjective homomorphism, so $L$ is a homomorphic image of $L$. If $L^{\prime}$ is a Łukasiewicz algebra with a single element, $L^{\prime}=$ $\left\{1^{\prime}\right\}$ then the map $h: L \rightarrow L^{\prime}$ defined by $h(x)=1^{\prime}$, for all $x \in L$, is a surjective homomorphism so $L^{\prime}$ is a homomorphic image of $L$. These two homomorphic images of $L$ are called the trivial images of $L$.

If $h: A \rightarrow A^{\prime}$ is a homomorphism, the kernel of $h$ is the set:

$$
\operatorname{Ker}(h)=h^{-1}(1)=\{a \in A: h(a)=1\} .
$$

It is clear that this set has the following properties:
D1) $1 \in \operatorname{Ker}(h)$,
D2) If $a, a \rightarrow b \in \operatorname{Ker}(h)$, then $b \in \operatorname{Ker}(h)$.
Lemma 2.1.4. If $A$ and $A^{\prime}$ are Eukasiewicz algebras and $h$ is a homomorphism from $A$ to $A^{\prime}$, then $h(a)=h(b)$ if and only if $a \mapsto b \in \operatorname{Ker}(h)$ and $b \mapsto a \in$ $\operatorname{Ker}(h)$.

Proof. $h(a \hookrightarrow b)=h(a) \rightharpoondown h(b)=h(a) \rightharpoondown h(a)=1$ so $a \rightharpoondown b \in \operatorname{Ker}(h)$. Analogously, from $h(b \rightharpoondown a)=1$ it follows that $b \hookrightarrow a \in \operatorname{Ker}(h)$.

Conversely, if $a \longmapsto b \in \operatorname{Ker}(h)$ and $b \mapsto a \in \operatorname{Ker}(h)$ then $1=h(a \hookrightarrow b)=$ $h(a) \longmapsto h(b)$ and $1=h(a \longmapsto b)=h(a) \longmapsto h(b)$, so by property IC13) from section 1.5 we have that $h(a)=h(b)$.

Definition 2.1.5. A part $D$ of a Eukasiewicz algebra $L$ is said to be a deductive system if

D1) $1 \in D$,
D2) If $a, a \rightarrow b \in D$, then $b \in D$ (modus ponens).
Definition 2.1.6. A part $F$ of a Eukasiewicz algebra $L$ is said to be a filter if

F1) $F \neq \emptyset$,
F2) if $a, b \in F$, then $a \wedge b \in F$,
F3) if $a \in F$ and $a \leq b$ then $b \in F$.
Lemma 2.1.7. Every deductive system $D$ of a Łukasiewicz algebra $L$ is a filter of $L$.

Proof. The properties of the operation $\rightarrow$ that we will cite were proved in section 1.5.

We prove first that if $D$ is a deductive system then :
D3) If $b \in D$ then $a \rightarrow b \in D$ for all $a \in L$.
Indeed, from $b \in D$ and by property ID5) we know that $b \rightarrow(a \rightarrow b)=1$, so from D1) and D2) it follows that $a \rightarrow b \in D$.

F1) $D \neq \emptyset$.
Obvious, given that $1 \in D$.
F2) If $a, b \in D$, then $a \wedge b \in D$.
By property ID8) we know that $a \rightarrow(a \wedge b)=a \rightarrow b$. Since $b \in D$ it follows by D3) that $a \rightarrow b \in D$, this is $a \rightarrow(a \wedge b) \in D$, so since $a \in D$ it follows by D2) that $a \wedge b \in D$.
F3) If $a \in D$ and $a \leq b$ then $b \in D$.
From $a \leq b$, it follows by ID6) that $1=a \rightarrow a \leq a \rightarrow b$, so $a \rightarrow b=$ $1 \in D$ and since $a \in D$ it follows by D2 that $b \in D$.

Note that there exist filters that are not deductive systems. Indeed, in the Łukasiewicz algebra $T$ from Example 1.2.3, $[c)=\{c, 1\}$ is a filter but not a deductive system since $c \in[c), c \rightarrow 0=1 \in[c)$ and $0 \notin[c)$.

Definition 2.1.8. $A$ filter $F$ of a Eukasiewicz algebra $L$ is said to be $a \Delta$-filter if it verifies: If $f \in F$ then $\Delta f \in F$.

Lemma 2.1.9. A subset $D$ of a Eukasiewicz algebra $L$ is a deductive system if and only if $D$ is a $\Delta$-filter.

Proof. We already know that every deductive system is a filter. Let $d \in D$, so since by ID13), $d \rightarrow \Delta d=1$ and $1 \in D$ it follows by D2) that $\Delta d \in D$.

Assume now that (1) $D$ is a $\Delta$-filter of $L$ so $1 \in D$. If (2) $a \in D$ and (3) $a \rightarrow b \in D$ then from (2) and (1) it follows that (4) $\Delta a \in D$. Then since $D$ is a filter, from (4) and (3): $\Delta a \wedge(a \rightarrow b) \in D$. But $\Delta a \wedge(a \rightarrow b)=\Delta a \wedge(\nabla \sim$ $a \vee b)=(\Delta a \wedge \nabla \sim a) \vee(\Delta a \wedge b)=0 \vee(\Delta a \wedge b)=\Delta a \wedge b$, this is $\Delta a \wedge b \in D$ and since $\Delta a \wedge b \leq b$, it follows that $b \in D$ because $D$ is a filter.

We consider now a notion introduced by H. Rasiowa in her study of Nelson algebras [72] which we can also define in Łukasiewicz algebra.

Definition 2.1.10. A subset $D$ of a Eukasiewicz algebra $L$ is called a special filter of the first kind if it verifies:

R1) $D \neq \emptyset$,
R2) If $a, b \in D$ then $a \wedge b \in D$,
R3) If $a \in D$ and $a \rightarrow b=1$ then $b \in D$.
Lemma 2.1.11. A subset $D$ of a Eukasiewicz algebra $L$ is a deductive system if and only if $D$ is a special filter of the first kind.

Proof. We begin with the observation that a special filter of the first kind is a filter. It will be enough to prove that if (1) $a \in D$ and (2) $a \leq b$ then $b \in D$. From (2) it follows by ID6) that $1=a \rightarrow a \leq a \rightarrow b$, so (3) $a \rightarrow b=1 \in D$, and so from (1) and (3) it follows by R3) that $b \in D$.

If $D$ is a deductive system then the conditions R1), R2) and R3) are clearly satisfied.

Assume now that $D$ is a special filter of the first kind. From R1) it follows that there exists $d \in D$, so since $d \rightarrow 1=1$ it follows by R3) that $1 \in D$. We prove now that D2) holds, this is:

$$
\text { If } a, a \rightarrow b \in D \text { then } b \in D \text {. }
$$

From the hypothesis it follows by R2) that (4) $(a \rightarrow b) \wedge a \in D$. But (5) $((a \rightarrow b) \wedge a) \rightarrow b=($ by ID10 $))=(a \rightarrow b) \rightarrow(a \rightarrow b)=1$, so from (4) and (5) it follows by R3) that $b \in D$.

We can also point out this proof: we already saw that $D$ is a filter. If $a \in D$ then since $a \rightarrow \Delta a=1$ it follows by R3) that $D$ is a $\Delta$-filter and therefore a deductive system.

Now we study another notion of deductive system.

We say that a part $D$ of a Lukasiewicz algebra $L$ is a contraposed deductive system if

Cd1) $1 \in D$,
Cd2) If $a, a \longmapsto b \in D$, then $b \in D$.
Lemma 2.1.12. A subset $D$ of a Eukasiewicz algebra $L$ is a deductive system if and only if $D$ is a contraposed deductive system.

Proof. Assume that $D$ verifies D1) and D2), so Cd1) holds. Assume that $a, a \longmapsto b \in D$. Since $a \hookrightarrow b=(a \rightarrow b) \wedge(\sim b \rightarrow \sim b) \leq a \rightarrow b$ and $D$ is a filter, then $a \rightarrow b \in D$ and since $a \in D$, it follows by D1) that $b \in D$.

Assume now that $D$ verifies Cd1) and Cd2), so D1) holds. Assume also that (1) $a \in D$ and (2) $a \rightarrow b \in D$. We saw in Lemma 1.5.6 that (3) $a \rightarrow b=a \mapsto(a \multimap b)$ so from (1) and (3) it follows by Cd2) that (4) $a \mapsto b \in D$, and from (1) and (4) it follows by Cd 2$)$ that $b \in D$.

We see thus that both implications $\rightarrow$ and $\mapsto$ give raise to the same deductive systems.

Lemma 2.1.13. For a filter $D$ to be a deductive system it is necessary and sufficient that the condition C4) If $a, a \rightarrow b=\sim a \vee b \in D$ then $b \in D$ holds.

Proof. Assume that the filter $D$ is a deductive system and that (1) $a \in D$ and (2) $a \rightarrow b=\sim a \vee b \in D$. Then since $D$ is a filter, $a \wedge(\sim a \vee b) \in D$, but

$$
\begin{gathered}
a \wedge(\sim a \vee b)=(a \wedge \sim a) \vee(a \wedge b)=(a \wedge \nabla \sim a) \vee(a \wedge b)= \\
a \wedge(\nabla \sim a \vee b)=a \wedge(a \rightarrow b),
\end{gathered}
$$

so $a \wedge(\sim a \vee b) \in D$ and since $a \wedge(\sim a \vee b) \leq a \rightarrow b$ it follows, given that $D$ is a filter, that (3) $a \rightarrow b \in D$. From (1) and (3) it follows that since $D$ is a deductive system, $b \in D$.

Assume now that $D$ is a filter verifying condition C4). Since $D$ is a filter then D1) $1 \in D$ holds. Let us check that D2) holds, this is that if (4) $a \in D$ and (5) $a \rightarrow b \in D$ then $b \in D$. Indeed from (4) and (5) it follows that since $D$ is a filter $a \wedge(a \rightarrow b) \in D$, but $a \wedge(a \rightarrow b)=a \wedge(\nabla \sim a \vee b)=(a \wedge \nabla \sim a) \vee(a \wedge b)=$ $(a \wedge \sim a) \vee(a \wedge b)=a \wedge(\sim a \vee b)$. Therefore (6) $a \wedge(\sim a \vee b) \in D$, and since (7) $a \wedge(\sim a \vee b) \leq \sim a \vee b$ then from (6) and (7) it follows that $a \rightarrow b=\sim a \vee b \in D$ because $D$ is a filter, so by C4), $b \in D$.

If $X$ is a subset of a Łukasiewicz algebra $L$ we write $\Delta X=\{\Delta x: x \in X\}$ and $\nabla X=\{\nabla x: x \in X\}$.

We are going to point out next the relations existing between the deductive systems of a Eukasiewicz algebra $L$ and the filters of the boolean algebra $B(L)$.

Lemma 2.1.14. If $D$ is a deductive system of $L, D \cap B(L)$ is a filter of $B(L)$ and $D \cap B(L)=\Delta D=\nabla D$.

Proof. F1) $1 \in D \cap B(L)$. Immediate since $1 \in D, B(L)$.

F2) Assume that $x, y \in D \cap B(L)$, this is (1) $x, y \in D$ and (2) $x, y \in B(L)$. From (1) it follows, since $D$ is a filter that (3) $x \wedge y \in D$, and from (2) it follows that (4) $x \wedge y \in B(L)$ because $B(L)$ is a boolean algebra. From (3) and (4) we conclude that $x \wedge y \in D \cap B(L)$.

F3) Assume that (5) $x \in D \cap B(L)$ and (6) $y \in B(L)$ are such that (7) $x \leq y$. From (5) it follows that in particular (8) $x \in D$, so from (7) and (8), we get (9) $y \in D$ because $D$ is a filter, and from (9) and (6) $y \in D \cap B(L)$.
Let $f \in D \cap B(L)$, this is (10) $f \in D$ and (11) $f \in B(L)$. From (11) it follows that $\Delta f=f$, so by (10) we have that $f \in \Delta D$. Assume now that $f \in \Delta D$, so $f=\Delta d$ with $d \in D$, and since $D$ is a deductive system, hence a $\Delta$-filter, we have that $\Delta d \in D$ and since $\Delta d \in B(L)$ we have that $f=\Delta d \in D \cap B(L)$. Analogously one can prove that $D \cap B(L)=\nabla D$.

Recall the following results from lattice theory:
Lemma 2.1.15. If $R$ is a distributive lattice, with bottom element 0 and top element $1, X \subseteq R$ then
a) the filter generated by $X$ is the set
$F(X)=\left\{y \in R:\right.$ there exists $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $\left.\bigwedge_{i=1}^{n} x_{i} \leq y\right\}$.
b) If the set $X$ verifies F2) " $x \wedge y \in X$ for all $x, y \in X$," then
$F(X)=\{y \in R:$ there exists $x \in X$ such that $x \leq y\}$.
If $0 \notin X$ then $F(X)$ is a proper filter of $R$.
Lemma 2.1.16. If $L$ is a Eukasiewicz algebra and $X$ is a subset of $B(L)$ verifying condition F2) in the previous lemma then $F(X)$ is a $\Delta$-filter.

Proof. Since $X$ verifies condition F2) then by Lemma 2.1.15 b), if $y \in F(X)$ then there exists $x \in X$ such that (3) $x \leq y$. Since $x \in X \subseteq B(L)$ we have that (4) $\Delta x=x$, then by (3) and (4) it follows that $x=\Delta x \leq \Delta y$, so by Lemma 2.1.15 b), we have that $\Delta y \in F(X)$.

Corollary 2.1.17. If $Q$ is a filter of $L$ then $F(\Delta Q)$ and $F(\nabla Q)$ are $\Delta$-filters of $L$.

Proof. Let $x, y \in \Delta Q$, so $x=\Delta q_{1}, y=\Delta q_{2}$, where $q_{1}, q_{2} \in Q$, then $x \wedge y=$ $\Delta\left(q_{1} \wedge q_{2}\right)$ and since $q_{1} \wedge q_{2} \in Q$, we have that $x \wedge y \in \Delta Q$. By Lemma 2.1.16, $F(\Delta Q)$ is a $\Delta$-filter of $L$. In a similar way, we can prove that $F(\nabla Q)$ is a $\Delta$-filter de $L$.

Lemma 2.1.18. If $Q$ is a filter of $L$ then $B(L) \cap Q \subseteq F(\nabla Q)$.
Proof. If $b \in B(L) \cap Q$ then $b=\nabla b \in \nabla Q \subseteq F(\nabla Q)$.
We denote by $\mathbf{D}(L)$ and $\mathbf{F}(B(L))$ the sets of all the deductive systems of $L$ and all the filters of the boolean algebra $B(L)$, respectively.

Lemma 2.1.19. The transformation $\alpha: \mathbf{D}(L) \rightarrow \mathbf{F}(B(L))$ defined by $\alpha(D)=$ $D \cap B(L)$ is an order isomorphism from the poset $(\mathbf{D}(L), \subseteq)$ to the poset $(\mathbf{F}(B(L)), \subseteq)$ and $\alpha^{-1}(Q)=F(Q)$ where $Q \in \mathbf{F}(B(L))$.

Proof. We already saw in Lemma 2.1.14 that if $D \in \mathbf{D}(L)$ then $\alpha(D)=$ $D \cap B(L) \in \mathbf{F}(B(L))$.

1) If $D_{1}, D_{2} \in \mathbf{D}(L)$ are such that $D_{1} \subseteq D_{2}$ then $\alpha\left(D_{1}\right) \subseteq \alpha\left(D_{2}\right)$.

It is immediate to check this property.
2) $F(\Delta D)=F(D \cap B(L))=D$.

By Lemma 2.1.14 we know that $\Delta D=D \cap B(L)$.
If $D \in \mathbf{D}(L)$ then $D \cap B(L) \subseteq D$ and therefore $F(D \cap B(L)) \subseteq$ $F(D)=D$. If $d \in D$ then $\Delta d \in D \cap B(L) \subseteq F(D \cap B(L))$ so given that $\Delta d \leq d$, we have that $d \in F(D \cap B(L))$.
3) $\alpha$ is surjective.

Indeed, for each $Q \in \mathbf{F}(B(L))$, since $Q$ verifies condition F2), we have by Lemma 2.1.16 that $F(Q)$ is a $\Delta$-filter and therefore $F(Q) \in \mathbf{D}(L)$. Then $\alpha(F(Q))=F(Q) \cap B(L)$. Since $Q \subseteq B(L)$, then $Q=Q \cap B(L) \subseteq$ $F(Q) \cap B(L)$. Conversely, if $y \in F(Q) \cap B(L)$ in particular $y \in F(Q)$, so by Lemma 2.1.15 there exists $x \in Q$ such that $x \leq y$, and since $y \in B(L)$ we have that (1) $\nabla x \leq \nabla y=y$. From $x \in Q$ and $x \leq \nabla x$ it follows that (2) $\nabla x \in Q$. From (1) and (2) we obtain $y \in Q$, so $F(Q) \cap B(L) \subseteq Q$, and therefore $\alpha(F(Q) \cap B(L))=Q$.
4) If $D_{1}, D_{2} \in \mathbf{D}(L)$ are such that $\alpha\left(D_{1}\right) \subseteq \alpha\left(D_{2}\right)$ then $D_{1} \subseteq D_{2}$.

By hypothesis $D_{1} \cap B(L) \subseteq D_{2} \cap B(L)$, so by 2) $D_{1}=F\left(D_{1} \cap B(L)\right) \subseteq$ $F\left(D_{2} \cap B(L)\right)=D_{2}$.
We have proved that $\alpha$ is an order isomorphism.
If $Q \in \mathbf{F}(B(L))$ then $\alpha(F(Q))=F(Q) \cap B(L)$. We prove now that $F(Q) \cap$ $B(L)=Q$. Indeed, since $Q \subseteq F(Q)$ then if $h \in Q \subseteq B(L)$, we have that $h \in F(Q) \cap B(L)$. Conversely if $x \in F(Q) \cap B(L)$ then there exists $t \in Q \subseteq B(L)$ such that $t \leq x$, and $t=\Delta t$. Then $t=\Delta t \leq \Delta x$. Since $Q$ is a filter of $B(L)$, it follows that $\Delta x \in Q$, and since $x \in B(L), \Delta x=x$ then $x \in Q$.

Thus $\alpha(F(Q))=F(Q) \cap B(L)=Q$ and since $\alpha$ is a bijection, we have that $F(Q)=\alpha^{-1} \alpha(F(Q))=\alpha^{-1}(Q)$.

### 2.2. Quotient algebras

We shall indicate now a construction on a Łukasiewicz algebra $L$ that determines all its homomorphic images.

Lemma 2.2.1. If $D$ is a deductive system of a Eukasiewicz algebra $L$ and $d \in D$ then $x \mapsto d \in D$ for all $x \in L$.

Proof. Since $d \leq x \mapsto d=\sim x \vee d \vee(\nabla \sim x \wedge \nabla d), d \in D$ and $D$ is a filter then $x \mapsto d \in D$.

Given a deductive system $D$ of a Łukasiewicz algebra $L$ and $a, b \in L$, we write $a \equiv b(\bmod \mathrm{D})$ to indicate that: Co1) $a \mapsto b \in D$ and $b \mapsto a \in D$.

Lemma 2.2.2. For $a \equiv b(\bmod \mathrm{D})$ to hold it is necessary and sufficient that any of the following conditions are satisfied:

Co1) $(a \longmapsto b) \wedge(b \hookrightarrow a) \in D$,
Co2) $a \rightarrow b, \sim b \rightarrow \sim a, b \rightarrow a, \sim a \rightarrow \sim b \in D$,
Co3) There exists $d \in D$ such that $a \wedge d=b \wedge d$.
Proof. Co1) is equivalent to Co 2 ):
Since by definition $a \mapsto b=(a \rightarrow b) \wedge(\sim b \rightarrow \sim a)$ and $D$ is a filter then $a \mapsto b \in D$ is equivalent to $a \rightarrow b, \sim b \rightarrow \sim a \in D$, and in the same fashion, $b \mapsto a \in D$ is equivalent to $b \rightarrow a, \sim a \rightarrow \sim b \in D$.

Co3) implies Co1):
Assume that there exists $d \in D$ such that $a \wedge d=b \wedge d$ then $b \mapsto(a \wedge d)=$ $b \mapsto(b \wedge d)$ so by IC9) and IC3),

$$
(b \hookrightarrow a) \wedge(b \hookrightarrow d)=(b \hookrightarrow b) \wedge(b \mapsto d)=1 \wedge(b \mapsto d)=b \mapsto d
$$

this is (1) $b \mapsto d \leq b \mapsto a$. But as $d \in D$, it follows by Lemma 2.2.1 that (2) $b \mapsto d \in D$, so from (1) and (2) it follows, since $D$ is a filter, that (3) $b \mapsto a \in D$. Analogously, from $a \longmapsto(a \wedge d)=a \mapsto(b \wedge d)$ it follows that (4) $a \hookrightarrow b \in D$ and from (3) and (4) we conclude Co1).

Co1) implies Co3):
Assume now that Co1) holds, so since $D$ is a $\Delta$-filter we have that $d=\Delta((a \mapsto$ b) $\wedge(b \mapsto a)) \in D$, this is

$$
(5) d=(\nabla \sim a \vee \Delta b) \wedge(\nabla b \vee \Delta \sim a) \wedge(\nabla \sim b \vee \Delta a) \wedge(\nabla a \vee \Delta \sim b)
$$

and calculating we get that

$$
d=(\nabla \sim a \wedge \nabla \sim b \wedge \nabla a \wedge \nabla b) \vee(\Delta \sim a \wedge \Delta \sim b) \vee(\Delta a \wedge \Delta b)
$$

Then, since $d \in B(L)$,
$\Delta(d \wedge a)=\Delta d \wedge \Delta a=d \wedge \Delta a=0 \vee 0 \vee(\Delta a \wedge \Delta b)=\Delta a \wedge \Delta b=\Delta(a \wedge b)$.
Analogously one proves that $\Delta(d \wedge b)=\Delta(a \wedge b)$ and therefore:
(6) $\Delta(d \wedge a)=\Delta(d \wedge b)$.

From (5) it follows that

$$
\nabla(d \wedge a)=\nabla d \wedge \nabla a=d \wedge \nabla a=(\nabla \sim a \wedge \nabla \sim b \wedge \nabla a \wedge \nabla b) \vee 0 \vee(\Delta a \wedge \Delta b)
$$

and that

$$
\nabla(d \wedge b)=\nabla d \wedge \nabla b=d \wedge \nabla b=(\nabla \sim a \wedge \nabla \sim b \wedge \nabla a \wedge \nabla b) \vee 0 \vee(\Delta a \wedge \Delta b)
$$

Thus (7) $\nabla(d \wedge a)=\nabla(d \wedge b)$.
From (6) and (7) it follows by Moisil's determination principle that $a \wedge d=b \wedge d$ and since $d \in D$, we have proved that Co3) holds.

Technically condition Co3) is simpler than the others.
We prove now that $\equiv$ is an equivalence relation, and we shall use condition Co3) for doing so.

Eq1) $a \equiv a(\bmod \mathrm{D})$.
$\overline{\text { Since }} 1 \in D$ and $a \wedge 1=a \wedge 1$ Eq1) holds.
It is clear that

Eq2) If $a \equiv b(\bmod \mathrm{D})$ then $b \equiv a(\bmod \mathrm{D})$.
Eq3) If $a \equiv b(\bmod \mathrm{D})$ and $b \equiv c(\bmod \mathrm{D})$ then $a \equiv c(\bmod \mathrm{D})$.
$\overline{\text { By hypothesis there exist } d_{1}, d_{2} \in D \text { such that } a \wedge d_{1}=b \wedge d_{1}}$ and $b \wedge d_{2}=$ $c \wedge d_{2}$ so $a \wedge d_{1} \wedge d_{2}=b \wedge d_{1} \wedge d_{2}$ and $b \wedge d_{2} \wedge d_{1}=c \wedge d_{2} \wedge d_{1}$ and therefore $a \wedge d_{1} \wedge d_{2}=c \wedge d_{1} \wedge d_{2}$ and since $d_{1} \wedge d_{2} \in D$ then Eq3) holds.

If we use condition Co1) then the proofs are as follows:
Eq1) Since by IC3) $a \longmapsto a=1$ then $a \equiv a(\bmod \mathrm{D})$.
$\overline{\text { It is clear that Eq2) holds. }}$
Eq3) By hypothesis (1) $a \mapsto b \in D$, (2) $b \mapsto a \in D$, (3) $b \mapsto c \in D$, and (4) $c \rightharpoondown b \in D$. By IC10) we know that

$$
\text { (5) }(a \hookrightarrow b) \mapsto((b \hookrightarrow c) \mapsto(a \hookrightarrow c))=1 \in D \text {. }
$$

Then from (1) and (5) it follows by D2) (modus ponens) that

$$
\text { (6) }(b \hookrightarrow c) \hookrightarrow(a \hookrightarrow c) \in D \text {. }
$$

From (6) and (3) it follows again by D2) that

$$
\text { (7) } a \nrightarrow c \in D \text {. }
$$

In a similar fashion, from

$$
(c \hookrightarrow b) \longmapsto((b \hookrightarrow a) \mapsto(c \hookrightarrow a))=1 \in D
$$

Using (4) and (2) it follows that

$$
\text { (8) } c \rightharpoondown a \in D \text {. }
$$

We prove now that the relation " $\equiv$ " is compatible with all the operations, using condition Co3).

Eq4) If $a \equiv b(\bmod D)$ then $\sim a \equiv \sim b(\bmod D)$.
By hypothesis there exists $d \in D$ such that $a \wedge d=b \wedge d$, so $\sim a \vee \sim d=\sim$ $b \vee \sim d$ and therefore $(\sim a \vee \sim d) \wedge \Delta d=(\sim b \vee \sim d) \wedge \Delta d$, this is $(\sim a \wedge \Delta d) \vee(\sim$ $d \wedge \Delta d)=(\sim b \wedge \Delta d) \vee(\sim d \wedge \Delta d)$ and since $\sim d \wedge \Delta d=0$ we have that $\sim a \wedge \Delta d=\sim b \wedge \Delta d$, so since $\Delta d \in D$ it follows that $\sim a \equiv \sim b(\bmod \mathrm{D})$.

Eq5) If $a \equiv b(\bmod \mathrm{D})$ then $\nabla a \equiv \nabla b(\bmod \mathrm{D})$.
$\overline{\text { By hypothesis there exists } d \in D \text { such that } a \wedge d}=b \wedge d$, so $\nabla(a \wedge d)=\nabla(b \wedge d)$, this is $\nabla a \wedge \nabla d=\nabla b \wedge \nabla d$ then since $d \leq \nabla d, d \in D$ and $D$ is a filter we have that $\nabla d \in D$, hence $\nabla a \equiv \nabla b(\bmod \mathrm{D})$.

Eq6) If $a \equiv a^{\prime}(\bmod \mathrm{D})$ and $b \equiv b^{\prime}(\bmod \mathrm{D})$ then $a \vee b \equiv a^{\prime} \vee b^{\prime}(\bmod \mathrm{D})$.
By hypothesis there exist $d_{1}, d_{2} \in D$ such that $a \wedge d_{1}=a^{\prime} \wedge d_{1}$ and $b \wedge d_{2}=$ $b^{\prime} \wedge d_{2}$, so $a \wedge d_{1} \wedge d_{2}=a^{\prime} \wedge d_{1} \wedge d_{2}$ and $b \wedge d_{2} \wedge d_{1}=b^{\prime} \wedge d_{2} \wedge d_{1}$ and therefore $(a \vee b) \wedge d_{1} \wedge d_{2}=\left(a^{\prime} \vee b^{\prime}\right) \wedge d_{1} \wedge d_{2}$ and since $d_{1} \wedge d_{2} \in D$ it follows that $a \vee b \equiv a^{\prime} \vee b^{\prime}$ $(\bmod \mathrm{D})$.

The relation " $\equiv$ " is compatible with $\wedge$, as an immediate consequence of the De Morgan laws and the fact that " $\equiv$ " is compatible with $\sim$ and $\vee$.

Next we present a different proof based on condition Co1).
Eq4) By hypothesis $a \hookrightarrow b \in D$ and $b \mapsto a \in D$, so since by IC16)

$$
\sim a \mapsto \sim b=b \mapsto a \text { and } \sim b \mapsto \sim a=a \mapsto b
$$

it follows immediately that $\sim a \equiv \sim b(\bmod \mathrm{D})$.

Eq5) By hypothesis $a \longmapsto b \in D$ and $b \mapsto a \in D$, then (1) $\Delta(a \longmapsto b) \in D$ and (2) $\overline{\Delta(b} \hookrightarrow a) \in D$.

By IC11) we know that (3) $\Delta(a \hookrightarrow b) \mapsto(\nabla a \multimap \nabla b)=1 \in D$ so from (3) and (1) it follows that $\nabla a \mapsto \nabla b \in D$. In a similar way one proves $\nabla b \mapsto \nabla a \in D$.

We prove now: $(\mathrm{A})$ If $a \equiv a^{\prime}(\bmod \mathrm{D})$ then $a \vee b \equiv a^{\prime} \vee b(\bmod \mathrm{D})$. Indeed:

$$
\begin{gathered}
(a \vee b) \mapsto\left(a^{\prime} \vee b\right)=(\sim a \wedge \sim b) \vee a^{\prime} \vee b \vee\left(\nabla \sim a \wedge \nabla \sim b \wedge\left(\nabla a^{\prime} \vee \nabla b\right)\right)= \\
\left.(\sim a \wedge \sim b) \vee a^{\prime} \vee b \vee\left(\nabla \sim a \wedge \nabla \sim b \wedge \nabla a^{\prime}\right) \vee(\nabla \sim a \wedge \nabla \sim b \wedge \nabla b)\right)= \\
(\sim a \wedge \sim b) \vee a^{\prime} \vee\left[\left(\left(\nabla \sim a \wedge \nabla a^{\prime}\right) \vee b\right) \wedge(\nabla \sim b \vee b)\right] \vee[((\nabla \sim a \wedge \nabla b) \vee b) \wedge(\nabla \sim b \vee b)]= \\
(\sim a \wedge \sim b) \vee a^{\prime} \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right) \vee b \vee(\nabla \sim a \wedge \nabla b) \vee b= \\
(\sim a \wedge \sim b) \vee a^{\prime} \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right) \vee b \vee(\nabla \sim a \wedge \nabla b)= \\
{[(\sim a \vee \nabla \sim a) \wedge(\sim a \vee \nabla b) \wedge(\sim b \vee \nabla \sim a) \wedge(\sim b \vee \nabla b)] \vee a^{\prime} \vee b \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right)=} \\
{[\nabla \sim a \wedge(\sim a \vee \nabla b) \wedge(\sim b \vee \nabla \sim a)] \vee a^{\prime} \vee b \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right)=} \\
{[\nabla \sim a \wedge(\sim a \vee \nabla b)] \vee a^{\prime} \vee b \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right) \geq} \\
\sim a \vee a^{\prime} \vee\left(\nabla \sim a \wedge \nabla a^{\prime}\right)=a \longmapsto a^{\prime}
\end{gathered}
$$

and since $a \longmapsto a^{\prime} \in D$, from the preceding inequality it follows that $(a \vee b) \mapsto$ $\left(a^{\prime} \vee b\right) \in D$. In a similar fashion one proves that $\left(a^{\prime} \vee b\right) \longmapsto(a \vee b) \in D$.

Eq6) From $a \equiv a^{\prime}(\bmod \mathrm{D})$ it follows by $(\mathrm{A})$ that $a \vee b \equiv a^{\prime} \vee b(\bmod \mathrm{D})$ and from $b \equiv b^{\prime}(\bmod \mathrm{D})$ it follows that $b \vee a^{\prime} \equiv b^{\prime} \vee a^{\prime}(\bmod \mathrm{D})$, so $a \vee b \equiv a^{\prime} \vee b^{\prime}$ $(\bmod \mathrm{D})$.

Recall (see for instance [66]) that if $E, E^{\prime}$ are non-empty sets and $f$ is a function from $E$ to $E^{\prime}$ then the following relation, defined on $E$ :

$$
a, b \in E, a R_{f} b \text { iff } f(a)=f(b)
$$

is an equivalence relation. We represent by $C(a)$ the equivalence of $a$ with respect to $R_{f}$, this is:

$$
C(a)=\left\{b \in E: b R_{f} a\right\}=\{b \in E: f(b)=f(a)\} .
$$

Recall that if $R$ is an equivalence relation over a set $E$, the quotient set of $E$ by $R$ is the set of all the equivalence classes with respect to $R$. This set is denoted by $E / R$.

Consider the transformation $\varphi: E \rightarrow E / R$ defined by $\varphi(x)=C(x)$. It is well known that $\varphi$ is well defined since if $x=y$ then $\varphi(x)=C(x)=C(y)=\varphi(y)$. Furthermore, $\varphi$ is surjective, since given $x^{\prime} \in E / R$ this is, $x^{\prime}=C(x)$ with $x \in E$, then $\varphi(x)=C(x)=x^{\prime}$. Therefore $E / R$ is an image of $E$ by means of $\varphi$.
$\varphi$ is called the canonical transformation ("according to the rules") or natural transformation from $E$ onto $E / R$.

We shall prove that every image of $E$ may be obtained this way, this is, considering an equivalence relation $R$ over $E$ and constructing the quotient set $E / R$.

Lemma 2.2.3. If $f_{1}: E \rightarrow E_{1}, f_{2}: E \rightarrow E_{2}, f_{1}(E)=E_{1}$, and $R_{f_{1}} \subseteq R_{f_{2}}$, (this is, $a R_{f_{1}} b \Rightarrow a R_{f_{2}} b$ ) then there exists a unique function $h$ from $E_{1}$ to $E_{2}$ such that $h \circ f_{1}=f_{2}$. If $f_{2}(E)=\overline{E_{2} \text { then } h \text { is surjective }}$.

This is a standard algebraic construction and we just recall how the function $h$ is defined. Given $a_{1} \in E_{1}=f_{1}(E)$, we have that $a_{1}=f_{1}(a)$ with $a \in E$ and thus $f_{2}(a)=a_{2} \in E_{2}$. Then $h\left(a_{1}\right)$ is defined to be $a_{2}=f_{2}(a)$.

Lemma 2.2.4. If $f_{1}(E)=E_{1}, f_{2}(E)=E_{2}$, and $R_{f_{1}}=R_{f_{2}}$, then $E_{1}$ and $E_{2}$ have the same cardinality.

Lemma 2.2.5. If $f(E)=E_{1}$ then $E^{\prime}=E / R_{f}$ has the same cardinality as $E_{1}$.
Therefore, all the images of a non-empty set $E$ are obtained (up to a bijection) considering equivalence relations $R$ on $E$ and constructing $E / R$, since: 1) if $R$ is an equivalence relation on $E$ then $E^{\prime}=E / R$ is a image of $E$ and 2) if $E^{\prime}$ is an image of $E$ there exists an equivalence relation $R$ defined on $E$ such that $E^{\prime}$ has the same cardinality as $E / R$.

Given a deductive system $D$ of a Łukasiewicz algebra $L$, the quotient set of $L$ by the congruence " $\equiv$ " is denoted by $A / \equiv$ or $A / D$. For each $x \in L$, we denote $C_{D}(x)=\{y \in L: y \equiv x\}$ or simply by $C(x)$ the equivalence class containing the element $x$.

If $x, y \in L$ and we algebrize the set $A / D$ by
(1) $C(x) \vee C(y)=C(x \vee y)$;
(2) $C(x) \wedge C(y)=C(x \wedge y)$
(3) $\sim C(x)=C(\sim x) ;$
(4) $\nabla C(x)=C(\nabla x)$;
(5) $1^{\prime}=C(1)$
then as we proved above, the system $\left(A^{\prime}=A / D, 1^{\prime}, \nabla, \sim, \vee, \wedge\right)$ is a Lukasiewicz algebra which we denominate the quotient algebra of $L$ by $D$.

Clearly the transformation $h: A \rightarrow A / D$ defined by $h(a)=C(a)$ is a homomorphism, called the natural homomorphism, from $A$ onto $A / D$, and which has $D$ as its kernel. Indeed, let $N=h^{-1}\left(1^{\prime}\right)$. We prove that $N=D$. If $x \in N$ then $C(x)=h(x)=1^{\prime}=C(1)$, so $x \equiv 1$ and therefore there exists $d \in D$ such that $x \wedge d=1 \wedge d$ this is $x \wedge d=d$ hence $d \leq x$, so since $d \in D$ and $D$ is a filter, we have that $x \in D$. Conversely let $d \in D$ then since $d \wedge d=1 \wedge d$ it follows that $d \equiv 1(\bmod \mathrm{D})$, so $d \in C(1)=1^{\prime}$ this is $h(d)=1^{\prime}$, then $d \in N$.

Lemma 2.2.6. Let $L, L_{1}, L_{2}$ be Eukasiewicz algebras, and let $h_{1}: L \rightarrow L_{1}$, $h_{2}: L \rightarrow L_{2}$ be homomorphisms such that $h_{1}(L)=L_{1}$, and $\operatorname{Ker}\left(h_{1}\right) \subseteq \operatorname{Ker}\left(h_{2}\right)$. Then there exists a homomorphism $h: L_{1} \rightarrow L_{2}$. If furthermore $h_{2}(L)=L_{2}$, then $L_{2}$ is a homomorphic image of $L_{1}$.

Proof. $\operatorname{Ker}\left(h_{1}\right) \subseteq \operatorname{Ker}\left(h_{2}\right)$, is equivalent to $R_{h_{1}} \subseteq R_{h_{2}}$, so by Lemma 2.2.3 the transformation $h: L_{1} \rightarrow L_{2}$ defined by $h\left(a_{1}\right)=h_{2}(a)$, where $h_{1}(a)=a_{1}$ is a function from $L_{1}$ to $L_{2}$ that verifies $h \circ h_{1}=h_{2}$ and $h$ is the unique one in those conditions. Let us prove that in this case $h$ is a homomorphism.

H1) $h\left(a_{1} \vee b_{1}\right)=h\left(a_{1}\right) \vee h\left(b_{1}\right)$.
Let $a, b \in L$ be such that $h_{1}(a)=a_{1}, h_{1}(b)=b_{1}$ then $h\left(a_{1}\right) \vee h\left(b_{1}\right)=$ $h\left(h_{1}(a)\right) \vee h\left(h_{1}(b)\right)=h_{2}(a) \vee h_{2}(b)=h_{2}(a \vee b)=\left(h \circ h_{1}\right)(a \vee b)=$ $h\left(h_{1}(a \vee b)\right)=h\left(h_{1}(a) \vee h_{1}(b)\right)=h\left(a_{1} \vee b_{1}\right)$.

H2) $h\left(\sim a_{1}\right)=h\left(\sim h_{1}(a)\right)=h\left(h_{1}(\sim a)\right)=h_{2}(\sim a)=\sim h_{2}(a)=\sim((h \circ$ $\left.\left.h_{1}\right)(a)\right)=\sim\left(h\left(h_{1}(a)\right)=\sim h\left(a_{1}\right)\right.$.
H3) $h\left(\nabla a_{1}\right)=h\left(\nabla h_{1}(a)\right)=h\left(h_{1}(\nabla a)\right)=h_{2}(\nabla a)=\nabla h_{2}(a)=\nabla((h \circ$ $\left.\left.h_{1}\right)(a)\right)=\nabla\left(h\left(h_{1}(a)\right)=\nabla h\left(a_{1}\right)\right.$.
If $h_{2}(L)=L_{2}$, then by Lemma 2.2.3, $h$ is surjective.
Lemma 2.2.7. Let $L, L_{1}, L_{2}$ be Eukasiewicz algebras, $h_{1}: L \rightarrow L_{1}, h_{2}: L \rightarrow$ $L_{2}$ epimorphisms such that $\operatorname{Ker}\left(h_{1}\right)=\operatorname{Ker}\left(h_{2}\right)$. Then $L_{1}$ and $L_{2}$ are isomorphic Eukasiewicz algebras.

Proof. $\operatorname{Ker}\left(h_{1}\right)=\operatorname{Ker}\left(h_{2}\right)$, is equivalent to $R_{h_{1}}=R_{h_{2}}$, so by Lemma 2.2.4 the transformation $h: L_{1} \rightarrow L_{2}$ defined by $h\left(a_{1}\right)=h_{2}(a)$, where $h_{1}(a)=a_{1}$ is a bijection from $L_{1}$ to $L_{2}$. By Lemma 2.2.6, $h$ is a homomorphism, so $h$ is an isomorphism.

Corollary 2.2.8. If $L$ and $L^{\prime}$ are Eukasiewicz algebras and $h$ is a homomorphism from $L$ onto $L^{\prime}$ then $L^{\prime}$ is isomorphic to $L / \operatorname{Ker}(h)$.

Proof. Let $F=\operatorname{Ker}(h)$, so $F$ is a deductive system of $L$ and in consequence $L^{\prime \prime}=L / \operatorname{Ker}(h)$ is a Łukasiewicz algebra. Furthermore, $\varphi(x)=C_{\operatorname{Ker}(h)}(x)$ is an epimorphism from $L$ to $L^{\prime \prime}$ such that $\operatorname{Ker}(\varphi)=F=\operatorname{Ker}(h)$ and therefore $L^{\prime \prime}=L / \operatorname{Ker}(h) \cong L^{\prime}$.

Thus we have proved the following result by A. Monteiro, [36]:
Every homomorphic image of a Eukasiewicz algebra is obtained (up to isomorphism) considering deductive systems $D$ of $L$ and constructing $L / D$.

Lemma 2.2.9. If $L$ and $L^{\prime}$ are Eukasiewicz algebra, $h: L \rightarrow L^{\prime}$ is a homomorphism, and $G \subseteq L$ is such that $L S(G)=L$ then $L S(h(G))=h(L)$. This is if $G$ generates $L$ then $h(G)$ generates $h(L)$.

Proof. Let $S^{\prime}=L S(h(G))$, so $S^{\prime}$ is an $L$-subalgebra of $L^{\prime}$, and in consequence $S=h^{-1}\left(S^{\prime}\right)$ is an $L$-subalgebra of $L$. Furthermore (1) $G \subseteq S$ given that if $g \in G$ then $h(g) \in h(G) \subseteq S^{\prime}$ and therefore $g \in h^{-1}\left(S^{\prime}\right)=S$. From (1) it follows that $L=L S(G) \subseteq S$ and therefore $S=L=L S(G)$. Since $h$ is a function from $L$ onto $h(L)$ we have that $h(L)=h(S)=h\left(h^{-1}\left(S^{\prime}\right)\right)=S^{\prime}=L S(h(G))$.

Corollary 2.2.10. If $L$ and $L^{\prime}$ are Łukasiewicz algebras, $h: L \rightarrow L^{\prime}$ is an epimorphism, and $G \subseteq L$ is such that $L S(G)=L$ then $L S(h(G))=L^{\prime}$.

Lemma 2.2.11. Let $L$ and $L^{\prime}$ be Eukasiewicz algebras. For an epimorphism $h: L \rightarrow L^{\prime}$ to be an isomorphism, it is necessary and sufficient that $\operatorname{Ker}(h)=\{1\}$.

Proof. Assume that $h$ is a isomorphism, then $a \in \operatorname{Ker}(h)$ this is $h(a)=1=$ $h(1)$, so since $h$ is one to one, $a=1$. Assume now that (1) $\operatorname{Ker}(h)=\{1\}$ and that $h(a)=h(b)$ so $1=h(a \hookrightarrow b)=h(b \hookrightarrow a)$ and therefore $a \longmapsto b, b \mapsto a \in \operatorname{Ker}(h)$ then $a \longmapsto b=1=b \rightharpoondown a$ and in consequence $a=b$.

If $X$ is a subset of a Łukasiewicz algebra $L$ we denote with $\sim X$ the set $\{\sim x: x \in X\}$.

Lemma 2.2.12. If $R$ is a congruence relation defined over a Lukasiewicz algebra $L$ then:
a) $C(1)=\{x \in L: x R 1\}$ is a deductive system.
b) The following conditions are equivalent:
b1) $a R b$.
b2) $a \rightarrow b, \sim a \rightarrow \sim b, b \rightarrow a, \sim b \rightarrow \sim a \in C(1)$.
b3) There exists $n \in C(1)$ such that $a \wedge n=b \wedge n$.
c) $C(1)=\sim C(0)=\{\sim x: x \in C(0)\}$.

Proof. a) Since $1 R 1$ then F1) $1 \in C(1)$.
F2) Let $x, y \in C(1)$, so $x R 1, y R 1$, and since $R$ is compatible with $\wedge$ we have that $(x \wedge y) R(1 \wedge 1)=1$, therefore $x \wedge y \in C(1)$.

F3) If $x \in C(1)$, then $x R 1$, and since $y R y$, and $R$ is compatible with $\wedge$, we have that $(x \wedge y) R(1 \wedge y)=y$. Therefore if $x \leq y$ where $y \in L$, we have that $x \wedge y=x$, and therefore $x R y$. Since $x R 1$ we get, given that $R$ is an equivalence relation, that $y R 1$, this is $y \in C(1)$.

Note that it is enough that $R$ is compatible with $\wedge$ to prove that $C(1)$ is a filter.

F4) If $x \in C(1)$, this is, $x R 1$ then as $R$ is compatible with $\Delta$ we have that $\Delta x R \Delta 1=1$, and therefore $\Delta x \in C(1)$. We have thus proved that $C(1)$ is a deductive system.
b) b1) implies b2):

Recall that by L13), $\nabla \sim a \vee a=1$, so from $a R b$, since $R$ is compatible with $\vee$ it follows that:

$$
1=(\nabla \sim a \vee a) R(\nabla \sim a \vee b)=a \rightarrow b
$$

therefore $a \rightarrow b \in C(1)$. From $a R b$, since $R$ is compatible with $\sim$ it follows that $\sim a R \sim b$ then, as $R$ is compatible with $\vee$ we have that $1=(\nabla a \vee \sim a) R(\nabla a \vee \sim b)=\sim a \rightarrow \sim b$ therefore $\sim a \rightarrow \sim b \in C(1)$. Analogously, we can prove $b \rightarrow a \in C(1)$ and $\sim a \rightarrow \sim b \in C(1)$.
b2) implies b3):
$\overline{\text { From } a \rightarrow b, \sim a} a \rightarrow b \in C(1)$ and $b \rightarrow a, \sim b \rightarrow \sim a \in C(1)$, since $C(1)$ a filter, it follows that $a \hookrightarrow b, b \mapsto a \in C(1)$, so

$$
n=(a \hookrightarrow b) \wedge(b \mapsto a) \in C(1),
$$

and as in the proof of Lemma 2.2.2, we can show that $a \wedge n=b \wedge n$.
b3) implies b1):
Assume now that there exists $n \in C(1)$ such that $a \wedge n=b \wedge n$. From $n \in C(1)$ it follows that $n R 1$, so, since $R$ is compatible with $\wedge$, we have that $a \wedge n R a \wedge 1=a$ and $(b \wedge n) R(b \wedge 1)=b$. Since by hypothesis $a \wedge n=b \wedge n$, it follows that $a R b$.
c) $x \in C(1) \Leftrightarrow x R 1 \Leftrightarrow(\mathrm{R}$ is compatible with $\sim) \sim x R \sim 1=0 \Leftrightarrow \sim x \in$ $C(0) \Leftrightarrow x \in \sim C(0)$.

We can now conclude that there exists a bijective correspondence between the deductive systems of a Łukasiewicz algebra $L$ and the set of congruences defined on $L$.

### 2.3. Construction of deductive systems

We will indicate methods to obtain the deductive systems of a Łukasiewicz algebra. In the development of a deductive theory, as in mathematics, a set $H$ of statements is considered, and each of those statements is called an axiom or hypothesis. The statements in $H$ are not, in general, tautologies of the propositional calculus, and thus they are said to be true by hypothesis.

The goal is then to obtain the logical consequences of the hypothesis in $H$, which is done through proofs that must follow the rules of logic.

We consider first the case in which $H$ is a finite sequence of elements of a Łukasiewicz algebra $L$.

Definition 2.3.1. Given a sequence $h_{1}, h_{2}, \ldots, h_{n}$ of elements of $L, x \in L$ is said to be a consequence of the sequence, and denoted by $h_{1}, h_{2}, \ldots, h_{n} \vdash x$ if

$$
\left(h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) \rightarrow x=1
$$

The intuitive concept of logical consequence is such that if $x$ is a consequence of the sequence $h_{1}, h_{2}, \ldots, h_{n}$ then, if we alter the order of the hypothesis, then $x$ is also a consequence of the new sequence thus obtained. This is what we point out in the following results:

Lemma 2.3.2. If $h_{1}, h_{2}, \ldots, h_{k-1}, h_{k}, h_{k+1}, \ldots, h_{n} \vdash x$ then

$$
h_{1}, h_{2}, \ldots, h_{k-1}, h_{k+1}, h_{k}, \ldots, h_{n} \vdash x .
$$

Proof. The lemma is immediate from the commutative property of the meet operation.

From the lemma above, by trivial procedures, we prove:
Lemma 2.3.3. If $h_{1}, h_{2}, \ldots, h_{n} \vdash x$ and $k_{1}, k_{2}, \ldots, k_{n}$ is a permutation of the elements $h_{1}, h_{2}, \ldots, h_{n}$ then $k_{1}, k_{2}, \ldots, k_{n} \vdash x$.

We see thus that the fact that $x$ is a consequence of the hypothesis appearing in a sequence does not depend on their order, but just on the hypothesis in the set.

We can then replace the definition above by the following one:
Definition 2.3.4. Given a finite, non-empty set of elements of $L$, $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ we say that $x \in L$ is consequence of $H$ and denote by $\left(h_{1}, h_{2}, \ldots, h_{n}\right) \vdash x$ if

$$
\left(h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) \rightarrow x=1
$$

Lemma 2.3.5. If $\left(h_{1}, h_{2}, \ldots, h_{n}\right) \vdash x$ then $\left(h_{0}, h_{1}, h_{2}, \ldots, h_{n}\right) \vdash x$.

Proof. Since

$$
h_{0} \wedge h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n} \leq h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}
$$

then by the hypothesis $\left(h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) \rightarrow x=1$ and property ID7) of $\rightarrow$ we have that

$$
1=\left(h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) \rightarrow x \leq\left(h_{0} \wedge h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) \rightarrow x
$$

which proves the lemma.
Definition 2.3.6. We say that $x \in L$ is consequence of the empty subset of $L$ if $x=1$ and denote this by $\emptyset \vdash x$, this is $\emptyset \vdash x$ if and only if $x=1$.

Definition 2.3.7. Given a part $H$ of a Eukasiewicz algebra $L$, we say that $x$ is a consequence of $H$, if $x$ is a consequence of a finite part of $H$ and denote this by $H \vdash x$.

Given a subset $H$ of a Łukasiewicz algebra $L$ we denote by $\mathbf{C}(H)$ the set of all the consequences of $H$. This operator will be called the consequence operator.

Given a subset $H$ of a Łukasiewicz algebra $L$, we call the deductive system generated by $H$ the intersection of all the deductive systems containing $H$, and we denote it by $D(H)$. Since $L$ is a deductive system containing $H$ and that the intersection of deductive systems is a deductive system, the operator $D$ is well defined. Clearly $D(H)$ is the least deductive system containing $H$.

The definition of $D(H)$ isn't constructive since it involves the family of all the deductive systems containing $H$.

Theorem 2.3.8. If $H$ is a subset of a Łukasiewicz algebra then $D(H)=\mathbf{C}(H)$.
Proof. First case: $H=\emptyset$. By definition $\mathbf{C}(\emptyset)=\{1\}$. On the other hand, since $\{1\}$ is a deductive system, and it is the least deductive system of $L$, it is contained in any other deductive system so $D(\emptyset)=\{1\}$.

Second case: $H \neq \emptyset$.
(i) $\mathrm{C}(H)$ is a deductive system.

D1) $1 \in \mathbf{C}(H)$. Indeed, since $H \neq \emptyset$ there exists $h \in H$ and since $h \rightarrow 1=1$ it follows that $1 \in \mathbf{C}(H)$.

D2) If $x \in \mathbf{C}(H)$ and $x \rightarrow y \in \mathbf{C}(H)$ then $y \in \mathbf{C}(H)$.
By hypothesis there exist finite subsets of $H,\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ and $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ such that:
(1) $\left(\bigwedge_{i=1}^{n} h_{i}\right) \rightarrow x=1$,

$$
\begin{equation*}
\left(\bigwedge_{j=1}^{m} k_{j}\right) \rightarrow(x \rightarrow y)=1 \tag{2}
\end{equation*}
$$

Put $h=\bigwedge_{i=1}^{n} h_{i}$ and $k=\bigwedge_{j=1}^{m} k_{j}$, then
(3) $h \rightarrow x=1$

$$
\text { (4) } k \rightarrow(x \rightarrow y)=1
$$

Since for all $a \in L, a \rightarrow 1=1$ from (4) it follows that

$$
\text { (5) } h \rightarrow(k \rightarrow(x \rightarrow y))=1,
$$

so by property ID10) of $\rightarrow$, (5) can be written as

$$
\text { (6) } \quad(h \wedge k) \rightarrow(x \rightarrow y)=1 \text {. }
$$

By ID15) we know that
(7) $((h \wedge k) \rightarrow(x \rightarrow y)) \rightarrow((h \wedge k) \rightarrow x) \rightarrow((h \wedge k) \rightarrow y)=1$.

Then since by ID4), $1 \rightarrow a=a$, from (6) and (7) it follows that

$$
\text { (8) } \quad((h \wedge k) \rightarrow x) \rightarrow((h \wedge k) \rightarrow y)=1
$$

By ID10) we know that
(9) $(h \wedge k) \rightarrow x=(k \wedge h) \rightarrow x=k \rightarrow(h \rightarrow x)$
and by (3) we have
(10) $(h \wedge k) \rightarrow x=1$.

So, since $1 \rightarrow a=a$, from (8) and (10) it follows that

$$
\text { (11) } \quad(h \wedge k) \rightarrow y=1
$$

this is

$$
\begin{equation*}
\left(\bigwedge_{i=1}^{n} h_{i} \wedge \bigwedge_{j=1}^{m} k_{j}\right) \rightarrow y=1 \tag{12}
\end{equation*}
$$

where $h_{i} \in H, 1 \leq i \leq n$ and $k_{j} \in H, 1 \leq j \leq m$, and therefore $y \in \mathbf{C}(H)$.
From D1) and D2) it follows that $\mathbf{C}(H)$ is a deductive system.
(ii) $H \subseteq \mathbf{C}(H)$.

Let $h \in H$, so since $h \rightarrow h=1$ it follows that $H \vdash h$, this is $h \in \mathbf{C}(H)$.
From (i) and (ii) it follows that
(iii) $D(H) \subseteq \mathbf{C}(H)$.
(iv) $\mathbf{C}(H) \subseteq D(H)$.

If $x \in \mathbf{C}(H)$ then

$$
\begin{equation*}
\left(\bigwedge_{i=1}^{n} h_{i}\right) \rightarrow x=1, \quad h_{i} \in H, 1 \leq i \leq n \tag{13}
\end{equation*}
$$

so since $h_{i} \in H \subseteq D(H)$ for $1 \leq i \leq n$ and $D(H)$ is a filter it follows that

$$
\begin{equation*}
\bigwedge_{i=1}^{n} h_{i} \in D(H) \tag{14}
\end{equation*}
$$

From (13) and (14), it follows by modus ponens that $x \in D(H)$.
From (iii) and (iv) it follows that $D(H)=\mathbf{C}(H)$.
We have thus a constructive way of obtaining deductive systems generated by a given set. We will now prove a result known as the Deduction Theorem which was proved first, in classical logic, by Alfred Tarski and Jacques Herbrand.

Theorem 2.3.9. Deduction Theorem

$$
H \cup\{x\} \vdash y \Longleftrightarrow H \vdash x \rightarrow y
$$

Proof. If $H=\emptyset$ then $H \cup\{x\}=\{x\}$ so $H \cup\{x\}=\{x\} \vdash y \Longleftrightarrow x \rightarrow y=$ $1 \Longleftrightarrow \emptyset \vdash x \rightarrow y$. Assume now that $H \neq \emptyset$.

Necessity: If $H \cup\{x\} \vdash y$ then there exist $g_{1}, g_{2}, \ldots, g_{n} \in H \cup\{x\}$ such that

$$
\text { (1) }\left(\bigwedge_{i=1}^{n} g_{i}\right) \rightarrow y=1
$$

Let $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. There are three cases to be considered:

- First case: $g_{i} \in H$ for all $i, 1 \leq i \leq n$.

By ID10),

$$
\begin{equation*}
\left(\bigwedge_{i=1}^{n} g_{i}\right) \rightarrow(x \rightarrow y)=x \rightarrow\left(\bigwedge_{i=1}^{n} g_{i} \rightarrow y\right) \tag{2}
\end{equation*}
$$

Since $a \rightarrow 1=1$, from (2) and (1) we have that

$$
\left(\bigwedge_{i=1}^{n} g_{i}\right) \rightarrow(x \rightarrow y)=1
$$

with $g_{i} \in H$ for all $i, 1 \leq i \leq n$, so $H \cup \vdash x \rightarrow y$.

- Second case: $g_{i}=x$ for all $i, 1 \leq i \leq n$.

From (1) we have that

$$
x \rightarrow y=\left(\bigwedge_{i=1}^{n} g_{i}\right) \rightarrow y=1
$$

and in consequence $h \rightarrow(x \rightarrow y)=1$, for all $h \in H$, so $H \cup \vdash x \rightarrow y$.

- Third case: $G \cap H \neq \emptyset$ and $G \cap\{x\} \neq \emptyset$.

Assume that $G \cap H=\left\{h_{1}, h_{2}, \ldots, h_{r}\right\}$ then by (1) we have that

$$
1=\left(\bigwedge_{i=1}^{n} g_{i}\right) \rightarrow y=\left(\left(\bigwedge_{i=1}^{r} h_{i}\right) \wedge x\right) \rightarrow y
$$

Then by ID10),

$$
\left(\bigwedge_{i=1}^{r} h_{i}\right) \rightarrow(x \rightarrow y)=1
$$

where $h_{i} \in H$ for $1 \leq i \leq r$, and therefore $H \vdash x \rightarrow y$.
Sufficiency: Assume that $H \vdash x \rightarrow y$. Then there exist $h_{1}, h_{2}, \ldots, h_{n} \in H$ such that

$$
\left(\bigwedge_{i=1}^{n} h_{i}\right) \rightarrow(x \rightarrow y)=1
$$

then by property ID10)

$$
\begin{equation*}
\left(\left(\bigwedge_{i=1}^{n} h_{i}\right) \wedge x\right) \rightarrow y=1 \tag{2.3.1}
\end{equation*}
$$

this is $H \cup\{x\} \vdash y$.
Given a deductive system $H$ of a Eukasiewicz algebra $L$ and $a \in L$ we denote with $D(H, a)$ the deductive system generated by the set $H \cup\{a\}$.

Theorem 2.3.10. If $H$ is a deductive system of a Eukasiewicz algebra $L$ and $a \in L$ then

$$
D(H, a)=\{x \in L: a \rightarrow x \in H\} .
$$

Proof. Since $H$ is a deductive system we have that $\mathbf{C}(H)=D(H)=H$, and by Theorem 2.3.8 we know that $D(H, a)=\mathbf{C}(H \cup\{a\})$ so

$$
\begin{gathered}
x \in D(H, a) \Longleftrightarrow x \in \mathbf{C}(H \cup\{a\}) \Longleftrightarrow H \cup\{a\} \vdash x \Longleftrightarrow \\
H \vdash(a \rightarrow x) \Longleftrightarrow a \rightarrow x \in \mathbf{C}(H)=H
\end{gathered}
$$

### 2.4. Arithmetics of the deductive systems

We saw that the determination of all the homomorphic images of a Łukasiewicz algebra $L$ can be reduced to the determination of all its deductive systems. We will study now the properties of the family $\mathbf{D}(L)$ of all the deductive systems of $L$. It is clear that $(\mathbf{D}(L), \subseteq)$ is a poset.

Among the deductive systems of a Łukasiewicz algebra $L$ are $L$ and the set $\{1\}$, which are different if $L$ has more than one element. Clearly the intersection of deductive systems is a deductive system. A deductive system $D$ of a Łukasiewicz algebra $L$ is said to be proper if $D \neq L$.

Lemma 2.4.1. If $D$ is a proper deductive system of a Łukasiewicz algebra $L$ then $a \wedge \sim a \notin D$, for all $a \in L$.

Proof. Indeed, if $a \wedge \sim a \in D$ then since $D$ is a $\Delta$-filter, $0=\Delta(a \wedge \sim a) \in D$ and $D=L$.

Calling contradictions the elements of the form $a \wedge \sim a$, then in the Łukasiewicz algebras no proper deductive system contains contradictions.

Lemma 2.4.2. If $\mathcal{K}=\left\{D_{i}\right\}_{i \in I}$ is a chain of deductive systems of a Łukasiewicz algebra $L$ then $D=\bigcup_{i \in I} D_{i}$ is a deductive system of $L$.

Proof. Since $1 \in D_{i}$ for all $i \in I$ then: D1) $1 \in D$.
We prove now that: D2) If $x \in D$ and $x \rightarrow y \in D$ then $y \in D$.
From $x \in D$ it follows that there exists $j \in I$ such that $x \in D_{j}$ and from $x \rightarrow y \in D$ it follows that there exists $h \in I$ such that $x \rightarrow y \in D_{h}$. Since $D_{j}, D_{h} \in \mathcal{K}$ and $\mathcal{K}$ is a chain then (i) $D_{j} \subseteq D_{h}$ or (ii) $D_{h} \subseteq D_{j}$. Assuming that (i) is the case, then $x, x \rightarrow y \in D_{h}$ and since $D_{h}$ is a deductive system we have that $y \in D_{h}$ and in consequence $y \in D$. If (ii) is the case, the proof is similar.

Let $D$ be a proper deductive system of $L$ and $a \notin D$. We consider the family

$$
\mathbf{D}(D, a)=\left\{D^{\prime} \in \mathbf{D}(L): D \subseteq D^{\prime}, a \notin D^{\prime}\right\}
$$

It is clear that $D \in \mathbf{D}(D, a)$ and that $(\mathbf{D}(D, a), \subseteq)$ is a poset.
Lemma 2.4.3. The poset $(\mathbf{D}(D, a), \subseteq)$ is inductive. This is, it is a poset in which every chain has an upper bound.

Proof. We have to prove that every chain $\mathcal{K}$ of elements of the set $\mathbf{D}(D, a)$ has an upper bound in $\mathbf{D}(D, a)$.

Let $\mathcal{K}=\left\{D_{i}\right\}_{i \in I}$ be a chain of $\mathbf{D}(D, a)$ and consider the set $D^{\prime}=\bigcup_{i \in I} D_{i}$, then by Lemma 2.4.2 we have: (1) $D^{\prime} \in \mathbf{D}(L)$, and (2) $a \notin D^{\prime}$, since $a \notin D_{i}$ for all $i \in I$. Since $D \subseteq D_{i}$ for all $i \in I$ then (3) $D \subseteq \bigcup_{i \in I} D_{i}=D^{\prime}$, and therefore from (1), (2) and (3) it follows that (4) $D^{\prime} \in \mathbf{D}(D, a)$, and from (3) and (4), that $D^{\prime}$ is an upper bound of $\mathcal{K}$ belonging to the set $\mathbf{D}(D, a)$. Therefore the poset $(\mathbf{D}(D, a), \subseteq)$ is inductive.

Notice that $D^{\prime}$ is a proper deductive system of $L$ given that $a \notin D^{\prime}$.
Since the set $\mathbf{D}(D, a)$ is inductive, by Zorn's Lemma, this set has at least a maximal element.

If $L$ is a non trivial Łukasiewicz algebra and $a \in L$, is such that $a \neq 1$, then $D=\{1\}$ is a deductive system of $L$ not containing the element $a$. Let

$$
\mathbf{D}(a)=\mathbf{D}(\{1\}, a)=\left\{D^{\prime} \in \mathbf{D}(L):\{1\} \subseteq D^{\prime}, a \notin D^{\prime}\right\}=\left\{D^{\prime} \in \mathbf{D}(L): a \notin D^{\prime}\right\}
$$

This is, if $a \neq 1, \mathbf{D}(a)$ represents the family of all the deductive systems of $L$ not containing the element $a$.

Each maximal element of this poset will be called a deductive system bounded to the element $a$ and denoted by $D_{a}$.

Each maximal element of the poset $\mathbf{D}(0)$ will be called a maximum deductive system, this is the maximum deductive systems are the maximal elements of the poset of all the proper deductive systems. If $L$ is a Łukasiewicz algebra with more than one element we denote with $\mathbf{M}(L)$ the set of all the maximum deductive systems of $L$.

Lemma 2.4.4. For a principal filter $F(x)=[x)$ of a Eukasiewicz algebra $L$ to be a deductive system it is necessary and sufficient that $x \in B(L)$.

Proof. If $[x)$ is a deductive system, this is a $\Delta$-filter, then from $x \in[x)$ it follows that $\Delta x \in[x)$, this is $x \leq \Delta x$, so $\Delta x=x$, this is $x \in B(L)$. Conversely if $x \in B(L)$, let $y \in[x)$ so $x \leq y$ and in consequence $x=\Delta x \leq \Delta y$, then $\Delta y \in[x)$ which proves that $[x)$ is a $\Delta$-filter, thus a deductive system.

Lemma 2.4.5. Let $D \in \mathbf{D}(L)$ and $a \notin D$, then if $M$ is a maximal element of $\mathbf{D}(D, a), M$ is a maximal element of $\mathbf{D}(a)$.

Proof. (i) $\mathbf{D}(D, a) \subseteq \mathbf{D}(a)$.
Let $D^{\prime} \in \mathbf{D}(D, a)$, so $a \notin D^{\prime}$. It follows that $D^{\prime} \in \mathbf{D}(a)$.
(ii) Assume that $M$ is a maximal element of $\mathbf{D}(D, a)$, in particular $M \in$ $\mathbf{D}(D, a)$ then by (i) we have that $M \in \mathbf{D}(a)$. If $M$ were not a maximal element of $\mathbf{D}(a)$, there would exist (1) $C \in \mathbf{D}(a)$ such that (2) $M \subset C$.

From (1) it follows that (3) $a \notin C$. By hypothesis (4) $D \subseteq M$, so from (2) and (4) we have (5) $D \subset C$. From (5) and (3), it follows that since $C$ is a deductive system, $C \in \mathbf{D}(D, a)$. Thus we have that $M \in \mathbf{D}(D, a)$, $M$ is maximal, $C \in \mathbf{D}(D, a)$ and $M \subset C$. Contradiction!

Notice that the converse of the preceding lemma is not true. For that consider the Łukasiewicz algebra $L$ indicated in Example 1.2.4, where $B(L)=\{0,1, d, e\}$, with diagram indicated in figure A. The poset $(\mathbf{D}(L), \subseteq)$ is depicted in figure B. The elements of the set $\mathbf{D}(a)$ are marked with $\bullet$, therefore $[d)$ and $[e)$ are the maximal elements of $\mathbf{D}(a)$.

The set $\mathbf{D}([d), a)$ has a single element $[d)$, so $[e)$ is a maximal element of $\mathbf{D}(a)$ and not a maximal element of $\mathbf{D}([d), a)$ since $[e) \notin \mathbf{D}([d), a)$.


Figure A


Figure B

Definition 2.4.6. A deductive system $D$ of a Eukasiewicz algebra $L$ is completely irreducible if

CI1) $D$ is proper,
CI2) If $\left\{D_{i}\right\}_{i \in I}$ is a family of deductive systems of $L$ such that $D=\bigcap_{i \in I} D_{i}$ then there exists an index $i \in I$ such that $D=D_{i}$.
$D$ is irreducible if:
Ir1) $D$ is proper,
Ir2) If $D_{1}$ and $D_{2}$ are deductive systems of $L$ such that $D=D_{1} \cap D_{2}$ then $D=D_{1}$ or $D=D_{2}$.

From the definition above, it is clear that every completely irreducible deductive system is irreducible.

Lemma 2.4.7. For a deductive system of a Eukasiewicz algebra $L$ to be completely irreducible it is necessary and sufficient for it to be bounded to some element of $L$.

Proof. Necessity: Let $C$ be a completely irreducible deductive system, so $C$ is a proper deductive system and therefore there exists at least an element $a \notin C$. Let $D$ be a maximal element of $\mathbf{D}(C, a)$ so $C \subseteq D$. By Lemma 2.4.5, $D$ is a deductive system bounded to $a$. Then for each $x \notin C$ there exists a deductive system $D_{x}$, bounded to $x$ such that (1) $C \subseteq D_{x}$. Let us prove that $C=\bigcap_{x \notin C} D_{x}$. By (1) it follows that (2) $C \subseteq \bigcap_{x \notin C} D_{x}$. Now we prove that (3) $\bigcap_{x \notin C} D_{x} \subseteq C$, which is equivalent to prove that $\complement C \subseteq \complement\left(\bigcap_{x \notin C} D_{x}\right)=\bigcup_{x \notin C} \complement D_{x}$. Let $y \in \complement C$ this is $y \notin C$ so since $y \notin D_{y}$ we have that $y \in \complement D_{y} \subseteq \bigcup_{x \notin C} C D_{x}$. From (2) and (3) it follows that $C=\bigcap_{x \notin C} D_{x}$ and therefore given that $C$ is completely irreducible there exists $x \notin C$ such that $C=D_{x}$.

Sufficiency: Given a deductive system $D_{y}$ bounded to $y$, since $y \notin D_{y}$ then $D_{y}$ is proper. Assume that $D_{y}=\bigcap_{i \in I} D_{i}$ where $\left\{D_{i}\right\}_{i \in I}$ is a family of deductive systems of $L$. Since $y \notin D_{y}$, there exists $i_{0} \in I$ such that $y \notin D_{i_{0}}$, so $D_{i_{0}} \in \mathbf{D}(y)$. Furthermore, $D_{y}=\bigcap_{i \in I} D_{i} \subseteq D_{i_{0}}$ and since $D_{y}$ is a maximal element of $\mathbf{D}(y)$ it follows that $D_{y}=D_{i_{0}}$.

Lemma 2.4.8. Every proper deductive system of a Eukasiewicz algebra $L$ is intersection of completely irreducible deductive systems.

Proof. Let $H$ be a proper deductive system of $L$, so there exists $x \in L$ such that $x \notin H$. Therefore, there exists a maximal element $M$ of $\mathbf{D}(H, x)$ and in consequence $M$ is maximal in $\mathbf{D}(x)$ this is $M=D_{x}$. Furthermore, $H \subseteq D_{x}$.

Then for each $x \notin H$ there exists a $D_{x}$ such that $H \subseteq D_{x}$ and therefore $H \subseteq \bigcap_{x \notin H} D_{x}$. Let us prove next that (1) $\bigcap_{x \notin H} D_{x} \subseteq H$.

To prove (1) is equivalent to prove that $\complement H \subseteq \complement\left(\bigcap_{x \notin H} D_{x}\right)=\bigcup_{x \notin H} \complement D_{x}$. Let $y \in \complement H$ then $y \notin H$ so $y \notin D_{y}$ and in consequence $y \in \complement D_{y} \subseteq \bigcup_{x \notin H} \complement D_{x}$.

Thus $H=\bigcap_{x \notin H} D_{x}$, where the deductive systems $D_{x}$ are completely irreducible for all $x \notin H$.

Corollary 2.4.9. Every proper deductive system of a Eukasiewicz algebra $L$ is intersection of irreducible deductive systems.

Proof. It is enough to note that every completely irreducible deductive system is irreducible.

We will prove that in the Eukasiewicz algebras the notions of completely irreducible deductive system, irreducible deductive system and maximal deductive system are equivalent. We begin by proving:

Lemma 2.4.10. Every irreducible deductive system P of a Łukasiewicz algebra $L$ is a prime filter.

Proof. By hypothesis $P$ is proper. Assume that $x \vee y \in P$ and consider the deductive systems $D_{1}=D(P, x), D_{2}=D(P, y)$, so $D=D_{1} \cap D_{2} \neq \emptyset, P \subseteq D_{1}$ and $P \subseteq D_{2}$. In consequence $P \subseteq D_{1} \cap D_{2}$.

We prove now that $D_{1} \cap D_{2} \subseteq P$. Let $t \in D_{1} \cap D_{2}$, this is $t \in D(P, x)$ and $t \in D(P, y)$, so by Theorem 2.3 .10 we have that: (1) $x \rightarrow t \in P$ and (2) $y \rightarrow t \in P$, so since $P$ is a filter, from (1) and (2) it follows that (3) $(x \rightarrow t) \wedge(y \rightarrow t) \in P$, but by the property ID12), $(x \rightarrow t) \wedge(y \rightarrow t)=(x \vee y) \rightarrow t$ and therefore (4) $(x \vee y) \rightarrow t \in P$, so since by hypothesis (5) $x \vee y \in P$, from (4) and (5) it follows that $t \in P$.

We have thus proved that $P=D_{1} \cap D_{2}$, so given that $P$ is irreducible it follows that (6) $P=D_{1}$ or (7) $P=D_{2}$. Since $x \in D_{1}$ and $y \in D_{2}$ we have that $x \in P$ or $y \in P$ therefore $P$ is a prime filter.

The converse to this result is not valid in general. If we consider the Łukasiewicz algebra $\mathbf{T}$ from Example 1.2.3, then $[c)$ is a prime filter of $\mathbf{T}$ but it is not a deductive system since $c \in[c)$ and $0=\Delta c \notin[c)$.

Lemma 2.4.11. In a Eukasiewicz algebra L every proper deductive system is intersection of prime filters.

Proof. By Corollary 2.4.9 we know that every proper deductive system is intersection of irreducible deductive systems and by Lemma 2.4.10 every irreducible deductive system is a prime filter.

Lemma 2.4.12. Every irreducible deductive system D of a Eukasiewicz algebra $L$ is a maximal deductive system.

Proof. Let $M \in \mathbf{D}(L)$ be such that (1) $D \subseteq M$ and (2) $m \in M$. By Lemma 2.4.10, $D$ is a prime filter. From $m \vee \nabla \sim m=1 \in D$ it follows that (3) $m \in D$ or (4) $\nabla \sim m \in D$. If (3) occurs then $M \subseteq D$, so by (1) we have $M=D$. If (4) occurs, then from (4) and (1) it follows that (5) $\nabla \sim m \in M$. From (2) it follows that since $M$ is a $\Delta$-filter, (6) $\Delta m \in M$, so by (5) and (6) we have that $0=\Delta m \wedge \nabla \sim m \in M$ and therefore $M=L$.

Corollary 2.4.13. In Eukasiewicz algebras, the notions of completely irreducible deductive system, irreducible deductive system and maximal deductive system coincide.

Proof. It is enough to notice that:

- By Definition 2.4.6 every completely irreducible deductive system is an irreducible deductive system.
- By Lemma 2.4.12 every irreducible deductive system is a maximal deductive system.
- Every maximal deductive system is a deductive system bounded to the bottom element of the algebra and therefore by Lemma 2.4.7 is also a completely irreducible deductive system.

Corollary 2.4.14. In the Eukasiewicz algebras, every proper deductive system is intersection of maximal deductive systems.

Proof. Immediate consequence of Lemma 2.4.8 and Corollary 2.4.13.
Corollary 2.4.15. If $L$ is a non trivial Eukasiewicz algebra then $\{1\}$ is the intersection of all the maximal deductive systems of $L$.

We characterize now the maximal deductive systems of a Łukasiewicz algebra, this is the completely irreducible deductive systems.

Theorem 2.4.16. For a deductive system $C$ of a Eukasiewicz algebra $L$ to be completely irreducible it is necessary and sufficient that there exists a $\notin C$ such that for all $x \notin C, x \rightarrow a \in C$ holds.

Proof. If $C$ is a completely irreducible deductive system, then it is bounded to some element $a \notin C$, this is $C$ is a maximal deductive system among the deductive systems not containing the element $a$. Let $x \notin C$ and consider the deductive system $D=D(C, x)$. Then $C \subseteq C \cup\{x\} \subseteq D(C, x)$ and (1) $a \in D(C, x)$, because otherwise $C$ would not be maximal among the deductive systems that do not contain the element $a$. By Theorem 2.3.10 we know that (2) $D(C, x)=$ $\{y \in L: x \rightarrow y \in C\}$. So from (1) and (2) we have that $x \rightarrow a \in C$.

Conversely assume that $C$ is a deductive system verifying: there exists $a \in L$ such that (1) $a \notin C$ and (2) for all $x \notin C, x \rightarrow a \in C$ holds. Then $C$ is a deductive system bounded to the element $a$. Otherwise, there would exist a deductive system $D$ such that (3) $C \subset D$ and (4) $a \notin D$, so if $x$ is an element verifying (5) $x \in D$ and (6) $x \notin C$, from the hypothesis it follows that (7) $x \rightarrow a \in C$ so by (3) we have (8) $x \rightarrow a \in D$ and from (5) and (8) it follows that $a \in D$, a contradiction.

Corollary 2.4.17. For a proper deductive system $M$ of a Łukasiewicz algebra $L$ to be maximal, it is necessary and sufficient that the following condition holds: $\left(^{*}\right)$ if $x \notin M$ then $x \rightarrow y \in M$ for all $y \in L$.

Proof. If $M$ is a maximal deductive system then it is bounded to any $x \notin M$, so $D(M, x)=L$. By lemma 2.3.10 we have that $x \rightarrow y \in M$ for all $y \in L$.

Conversely, let $M$ be a proper deductive system verifying (*). Assume that there exists a deductive system $D$ such that (1) $M \subset D \subseteq L$. Let $x \in D \backslash M$ so (2) $x \in D$ and (3) $x \notin M$. By (3), condition (*) implies that $x \rightarrow y \in M$ for all $y \in L$. Then by (1), $x \rightarrow y \in D$. From the fact that $D$ is a deductive system and (2), it follows that $y \in D$ for all $y \in L$, therefore $D=L$.

Theorem 2.4.18. For a proper deductive system $M$ of a Eukasiewicz algebra $L$ to be maximal, it is necessary and sufficient that for all $x \in L$ either $x \in M$ or $\nabla \sim x \in M$ hold.

Proof. If $M$ is maximal then by Corollary 2.4.13, it is an irreducible deductive system so by Lemma 2.4.10, it is a prime filter and so from $x \vee \nabla \sim x=1 \in M$ it follows that $x \in M$ or $\nabla \sim x \in M$.

Let $x \notin M$ then from the hypothesis it follows that $\nabla \sim x \in M$ and since $\nabla \sim x \leq \nabla \sim x \vee y=x \rightarrow y$ for all $y \in L$ and $M$ is a filter we have that $x \rightarrow y \in M$ for all $y \in L$ and in particular $x \rightarrow y \in M$ for all $y \notin M$, so by Corollary 2.4.17 $M$ is a maximal deductive system.

Recall that every boolean algebra $B$ can be regarded as a Łukasiewicz algebra, where $\nabla x=x$, for all $x \in B$, and therefore $\sim x$ is the boolean complement of $x$, this is $\sim x=-x$ and therefore $\nabla \sim x=-x$.

In this case, the notions of deductive system and filter coincide. Indeed, we know that every deductive system is a filter, and if $D$ is a filter of $B$, since $\Delta x=x$ for all $x \in B$ then clearly $D$ is a $\Delta$-filter, and thus a deductive system. Therefore in this case, the notion of maximal deductive system coincides with the notion of ultrafilter. As a corollary of the previous theorem we have:

Theorem 2.4.19. (Stone's theorem) For a proper filter $U$ of a boolean algebra $B$ to be an ultrafilter of $B$, it is necessary and sufficient that given $x \in B$ then $x \in U$ or $-x \in U$.

Lemma 2.4.20. In a Eukasiewicz algebra $L$, if $M$ is a deductive system, and $a \in L$ we have $D(M, a)=F(M, \Delta a)$

Proof. ( $\subseteq$ ) From Lemma 2.1.15 (a), we have (1) $F(M, \Delta a)=\{x \in L:$ $m \wedge \Delta a \leq x$, where $m \in M\}$. Let (2) $x \in D(M, a)$. By Theorem 2.3.10 and (2) it follows that $m=a \rightarrow x \in M$. Since $m \wedge \Delta a=(a \rightarrow x) \wedge \Delta a=(\nabla \sim a \vee x) \wedge \Delta a=$ $x \wedge \Delta a \leq x$ we conclude by (1) that $x \in F(M, \Delta a)$.
$(\supseteq)$ By definition, $M \cup\{a\} \subseteq D(M, a)$. Since $D(M, a)$ is a $\Delta$-filter, it also contains the set $M \cup\{\Delta a\}$. Therefore, $F(M, \Delta a) \subseteq D(M, a)$.

Next theorem is a particular instance of the theorem given by L. Monteiro in 1971, for monadic Łukasiewicz algebras [62].

Theorem 2.4.21. In a Eukasiewicz algebra $L$ the following statements are equivalent:
a) $M$ is a maximal deductive system,
b) if a $\notin M$, there exists $m \in M$ such that $\Delta a \wedge m=0$,
c) if $\Delta a \vee b \in M$ then $a \in M$ or $b \in M$,
d) if $a \notin M$, then $\nabla \sim a \in M$,
e) if $a, b \notin M$, then $a \rightarrow b \in M$ and $b \rightarrow a \in M$.

Proof. a) implies b): Consider the deductive system

$$
D=D(M, a)=(\text { by Lemma 2.4.20 })=F(M, \Delta a) .
$$

Since $F(M, \Delta a)=\{x \in L: m \wedge \Delta a \leq x$, where $m \in M\}$, if $m \wedge \Delta a \neq 0$ for all $m \in M$ then $D$ would be a proper deductive system such that $M \subset D$, a contradiction.
b) implies c): If $a \notin M$, by b) there exists $m \in M$ such that $\Delta a \wedge m=0$. Since $b \wedge m=(\Delta a \vee b) \wedge m \in M$, then $b \in M$.
c) implies $d$ ): Since $\Delta a \vee \nabla \sim a=1 \in M$, then by c) $\nabla \sim a \in M$.
$\overline{d) \text { implies } e):}$ If $a \notin M$, then $\nabla \sim a \in M$ and therefore $a \rightarrow b=\nabla \sim a \vee b \in$ $M$. Analogously one can prove $b \rightarrow a \in M$.
e) implies $a$ ): If $M$ were not maximal, there would exist a deductive system $M^{\prime}$ such that $M \subset M^{\prime} \subset L$. Let (1) $a \in M^{\prime} \backslash M$ and (2) $b \in L \backslash M^{\prime}$, so $a, b \notin M$ and therefore from e) it follows that in particular $a \rightarrow b \in M$ and therefore (3) $a \rightarrow b \in M^{\prime}$. From (1) and (3) it follows that $b \in M^{\prime}$, which contradicts (2).

Lemma 2.4.22. If $M$ is a maximal deductive system of a Łukasiewicz algebra $L$ then
$(M \cap B(L)) \cup(\sim M \cap B(L))=B(L)$ and $(M \cap B(L)) \cap(\sim M \cap B(L))=\emptyset$.
Proof. Let $X=(M \cap B(L)) \cup(\sim M \cap B(L))$ so $X \subseteq B(L)$. Let $b \in B(L)$. If $b \in M$ then clearly $b \in X$. If $b \notin M$ then by the previous theorem $\nabla \sim b \in M$, but since $b \in B(L)$ then $\sim b \in B(L)$ so $\sim b \in M$ and therefore $b \in \sim M$. It follows that $b \in \sim M \cap B(L)$, so $b \in X$.

If $a \in(M \cap B(L)) \cap(\sim M \cap B(L))$ then (1) $a \in B(L)$, (2) $a \in M$ and (3) $a \in \sim M$ so from (3) it follows that (4) $a=\sim m$ with (5) $m \in M$, then (6) $\sim a=m \in M$ and therefore from (2) and (6), $a \wedge \sim a \in M$, which is impossible, as we saw that no proper deductive system can contain contradictions.

Corollary 2.4.23. If $M$ is a maximal deductive system of a Eukasiewicz algebra $L$ and $b \in B(L)$ then $b \in M$ or $\sim b \in M$.

Lemma 2.4.24. $D(X)=F(\Delta X)$.
Proof. (i) $\Delta X \subseteq D(X)$. Let $y \in \Delta X$, this is $y=\Delta x$ where (1) $x \in X$. Since (2) $X \subseteq D(X)$ from (1) and (2) it follows that $x \in D(X)$ and since $D(X)$ is a deductive system we have that $y=\Delta x \in D(X)$.

Since $D(X)$ is a filter, from (i) it follows that (3) $F(\Delta X) \subseteq D(X)$.
Now we prove that (ii) $X \subseteq F(\Delta X)$. Given $x \overline{\in X, \Delta x \in \Delta X \subseteq F}(\Delta X)$, so $\Delta x \in F(\Delta X)$ and since $\Delta x \leq x$ and $F(\Delta X)$ is a filter we have $x \in F(\Delta X)$.

We prove next that (iii) $F(\Delta X)$ is a $\Delta$-filter. Let $y \in F(\Delta X)$, so by Lemma 2.1.15, (4) there exist $\overline{z_{1}, z_{2}, \ldots, z_{n} \in \Delta X \text { such }}$ that $\bigwedge_{i=1}^{n} z_{i} \leq y$ so $\bigwedge_{i=1}^{n} \Delta z_{i}=$ $\Delta\left(\bigwedge_{i=1}^{n} z_{i}\right) \leq \Delta y$ and since $z_{i} \in B(L)$, we have that (5) $\bigwedge_{i=1}^{n} z_{i} \leq \Delta y$. From (4) and (5) it follows that $\Delta y \in F(\Delta X)$. From (ii) and (iii) it follows that $D(X) \subseteq F(\Delta X)$.

We denote with $D(a)$ the deductive system generated by the set $\{a\}$. Every deductive system generated by a singleton set is called a principal deductive system. We saw in Lemma 2.4.24 that if $X \subseteq L$ then $D(X)=F(\Delta X)$, so if $X=\{a\}$ we have that $D(a)=F(\Delta a)=\{x \in L: \Delta a \leq x\}$. Since $\Delta a \leq x \Longleftrightarrow 1=\sim \Delta a \vee \Delta a \leq \sim \Delta a \vee x=a \rightarrow x$ then

$$
D(a)=\{x \in L: a \rightarrow x=1\} .
$$

It is clear that $D(1)=\{1\}=D(\emptyset)$. We shall prove that if $X$ is a finite non-empty subset of a Łukasiewicz algebra $L$ then $D(X)$ is a principal deductive system. More precisely:

Lemma 2.4.25. $D\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=D\left(\bigwedge_{i=1}^{n} a_{i}\right)$.

Proof. Let $a=\bigwedge_{i=1}^{n} a_{i}$, we will prove that $D\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=D(a)$. By Lemma 2.4.24 we have that

$$
D\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=F\left(\Delta\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)\right)=F\left(\left\{\Delta a_{1}, \Delta a_{2}, \ldots, \Delta a_{n}\right\}\right)
$$

From lattice theory we know that $F(\{x, y\})=F(x \wedge y)$ so

$$
F\left(\left\{\Delta a_{1}, \Delta a_{2}, \ldots, \Delta a_{n}\right\}\right)=F\left(\bigwedge_{i=1}^{n} \Delta a_{i}\right)=F\left(\Delta\left(\bigwedge_{i=1}^{n} a_{i}\right)\right)=F(\Delta a)=D(a) .
$$

Adapting Tarski's terminology, indicated in an analogous construction, we denominate axiomatizable deductive systems those that have a finite number of generators. Generally, in a deductive theory, a finite number of propositions $h_{1}, h_{2}, \ldots, h_{n}$ are taken to be true by hypothesis and their logical consequences are deduced. This situation has its algebraic counterpart when considering a finite number of elements $h_{1}, h_{2}, \ldots, h_{n}$ and studying the deductive system generated by the set $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$, this is $D\left(\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}\right)$.

Since it is natural to admit as true the propositions $h_{1}, h_{2}, \ldots, h_{n}$, which is the same as admitting as true $h=\bigwedge_{i=1}^{n} h_{i}$, then the set of consequences of $h_{1}, h_{2}, \ldots, h_{n}$ coincides with the set of consequences of $h=h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}$, this is:

$$
D\left(\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}\right)=D\left(h_{1} \wedge h_{2} \wedge \ldots \wedge h_{n}\right) .
$$

It is natural to name not axiomatizable deductive system those that do not have a finite number of generators.

Observe finally that if $L$ is a Lukasiewicz algebra then the ordered set $\mathbf{D}(L)$ is more precisely a bounded complete distributive lattice.

Indeed, if $D_{1}, D_{2} \in \mathbf{D}(L)$ and we put by definition:

- $D_{1} \sqcap D_{2}=D_{1} \cap D_{2}$
- $D_{1} \sqcup D_{2}=D\left(D_{1} \cup D_{2}\right)$
then $D_{1} \sqcap D_{2}$ and $D_{1} \sqcup D_{2}$ are the meet and join of the deductive systems $D_{1}$ and $D_{2}$ respectively. The first and last elements of $\mathbf{D}(L)$ are $\{1\}$ and $L$ respectively.

To prove that the lattice is distributive it remains to be proven that:

$$
D_{1} \sqcap\left(D_{2} \sqcup D_{3}\right) \subseteq\left(D_{1} \sqcap D_{2}\right) \sqcup\left(D_{1} \sqcap D_{3}\right),
$$

for every $D_{1}, D_{2}, D_{3} \in \mathbf{D}(L)$ (the other inclusion holds for every lattice).
If $x \in D_{1} \sqcap\left(D_{2} \sqcup D_{3}\right)=D_{1} \cap\left(D_{2} \sqcup D_{3}\right)$ then (1) $x \in D_{1}$ and (2) $x \in\left(D_{2} \sqcup D_{3}\right)$. From $x \in D_{2} \sqcup D_{3}=D\left(D_{2} \cup D_{3}\right)=($ Lemma 2.4.24 $)=F\left(\Delta\left(D_{2} \cup D_{3}\right)\right)$, then using Lemma 2.1.15 it follows that (3) $\Delta y \leq x$ for some $y \in D_{2} \cup D_{3}$.

If $y \in D_{2}$, since $D_{2}$ is a $\Delta$-filter, it follows that $\Delta y \in D_{2}$, and by (3) we have that (4) $x \in D_{2}$ because $D_{2}$ is a filter.

Therefore, (1) and (4) implies $x \in D_{1} \cap D_{2} \subseteq\left(D_{1} \sqcap D_{2}\right) \cup\left(D_{1} \sqcap D_{3}\right) \subseteq$ $\left(D_{1} \sqcap D_{2}\right) \sqcup\left(D_{1} \sqcap D_{3}\right)$. If $y \in D_{3}$ the proof is analogous.

Furthermore, since there always exist $\bigcap_{i \in I} D_{i}$ for every family $\mathcal{F}=\left\{D_{i}\right\}_{i \in I}$ of deductive systems of $L$, then (see, for example [73], p. 42) there also exists the least upper bound of $\mathcal{F}$ and therefore the lattice is complete.

### 2.5. Prime filters and deductive systems

This section includes results indicated by A. Monteiro in a Seminar in 1963, [37] and published in 1996, [48], [49].

Represent by $\mathbf{P}(L)$ the set all the prime filters of a Łukasiewicz algebra $L$ and by $\mathbf{p}(L)$ the set of all the minimal prime filters of $L$, this is the set of the minimal elements of the ordered set $(\mathbf{P}(L), \subseteq)$. Therefore $P$ is a minimal prime filter, if $P$ is prime and there exists no prime filter properly included in $P$.

If $P \in \mathbf{P}(L)$, we can define $\varphi(P)=\complement \sim P \in \mathbf{P}(L)$. The function $\varphi$ is denominated the Birula-Rasiowa transformation, [6], [7], and it verifies $\varphi(\varphi(P))=$ $P$ for all $P \in \mathbf{P}(L)$ and if $P, Q \in \mathbf{P}(L)$ then $P \subseteq Q \Longleftrightarrow \varphi(Q) \subseteq \varphi(P)$.

We will study the connections between the prime filters of a Łukasiewicz algebra $L$ and the maximal deductive systems of $L$.

Lemma 2.5.1. If $L$ is a Eukasiewicz algebra then:
a) If $b \notin P \in \mathbf{P}(L)$ and $b \in B(L)$ then $\sim b \in P$.
b) If $F$ is a proper filter of $L$ and $b \in F \cap B(L)$ then $\sim b \notin F$.

Proof. a) We know that $\sim b \vee \nabla b=1 \in P$ and since $b \in B(L), \nabla b=b$ and therefore $\sim b \vee b=1 \in P$, then since $P$ is a prime filter and $b \notin P$ it follows that $\sim b \in P$.
b) If $\sim b \in F$ then $b \wedge \sim b \in F$, but since $b \in B(L)$ then $b \wedge \sim b=0$ and therefore $F=L$, a contradiction.

Lemma 2.5.2. If $P \in \mathbf{P}(L)$ then $F(\nabla P) \in \mathbf{M}(L)$ and $F(\nabla P) \subseteq P$.
Proof. (i) $F(\nabla P) \subseteq P$.
We prove first (1) : $\nabla P \subseteq P$. Let $t \in \nabla P$, then $t=\nabla p$, where $p \in P$. Since $p \leq \nabla p=t$ and P is a filter, then $t \in P$. Since (2) $P$ is a filter, then from (1) and (2) we deduce (i).
(ii) By the Corollary 2.1.17, $F(\nabla P)$ is a deductive system. We prove next that it is a maximal deductive system.

Assume that there exists $M \in \mathbf{M}(L)$ such that: (3) $F(\nabla P) \subset M$. We show that (4) $M \nsubseteq P$. From (3) it follows that there exists an element $m \in L$ such that (5) $m \in M \backslash F(\nabla P)$, so since $M$ is a deductive system, from (5) we deduce that (6) $\Delta m \in M$. Since $\Delta m \leq m$, having (5) in mind it follows that (7) $\Delta m \notin F(\nabla P)$.

If (8) $M \subseteq P$, then from (6) it follows that, $\Delta m \in P$ and therefore $\Delta m=\nabla \Delta m \in \nabla P$, so $\Delta m \in F(\nabla P)$, which contradicts (7).

From (4) it follows that there exists $z \in L$, such that (9) $z \in M \backslash P$, then (10) $\Delta z \in M$, (11) $\Delta z \notin P$.

From (10) it follows, applying Lemma 2.5.1 b), that (12) $\sim \Delta z \notin M$. From (11) and Lemma 2.5.1 a), $\sim \Delta z \in P$, so $\sim \Delta z=\nabla \sim \Delta z \in \nabla P$, and therefore $\sim \Delta z \in F(\nabla P) \subseteq M$, which contradicts (12).

Lemma 2.5.3. Every prime filter $P$ of a Lukasiewicz algebra L contains one and only one maximal deductive system.

Proof. By Lemma 2.5.2 we know that there exists a maximal deductive system contained in $P$, namely $F(\nabla P)$. Let $M, M^{\prime} \in \mathbf{M}(L)$ be such that $M \subseteq P$, $M^{\prime} \subseteq P$ and $M \neq M^{\prime}$. Then there exists $x \in M \backslash M^{\prime}$ or there exists $x \in M^{\prime} \backslash M$. If $x \in M \backslash M^{\prime}$ then $\Delta x \in M$ and $\Delta x \notin M^{\prime}$. Since $M^{\prime}$ is a maximal deductive system then $L=D\left(M^{\prime}, \Delta x\right)=\left\{y \in L: \sim \Delta x \vee y \in M^{\prime}\right\}$, so $\sim \Delta x \in L=D\left(M^{\prime}, \Delta x\right)$, this is $\sim \Delta x=\sim \Delta x \vee \sim \Delta x \in M^{\prime}$, and since $M^{\prime} \subseteq P$ we have $\sim \Delta x \in P$. Since $\Delta x \in M \subseteq P$, then $\Delta x \in P$ and by Lemma 2.5.1 (b), $\sim \Delta x \notin P$, a contradiction. If $x \in M^{\prime} \backslash M$, we also arrive to a contradiction.

The next lemma is a well known fact.
Lemma 2.5.4. If $A$ is a Kleene algebra and $P$ is a prime filter of $A$ then $P \subseteq \varphi(P)$ or $\varphi(P) \subseteq P$.

Lemma 2.5.5. If $P \in \mathbf{P}(L)$ then $F(\nabla P) \subseteq \varphi(P)$.
Proof. Assume that (1) $F(\nabla P) \nsubseteq \varphi(P)=\complement \sim P$, then there exists (2) $m \in F(\nabla P),(3) m \notin \varphi(P)$.

From (2) we deduce that (4) $\Delta m \in F(\nabla P)$ and since $\Delta m \leq m$, from (3) and (4) it follows that (5) $\Delta m \notin \varphi(P)$.

Since $L$ is a Kleene algebra we know that every prime filter $P$ of $L$, is comparable with $\varphi(P)$.

If $P \subseteq \varphi(P)$, then since $F(\nabla P) \subseteq P$, we have $F(\nabla P) \subseteq \varphi(P)$, which contradicts (1). Then (6) $\varphi(P) \subset P$. Since $\Delta m \vee \sim \Delta m=1 \in \varphi(P)$ and $\varphi(P)$ is a prime filter, then from (5), we have $\sim \Delta m \in \varphi(P)$, and by (6) we have $\sim \Delta m \in P$, so by (4) $0=\Delta m \wedge \sim \Delta m \in P$. This contradicts the fact that $P$ is a proper filter. Therefore, $F(\nabla P) \subseteq \varphi(P)$.

Proof by L. Monteiro. Let $m \in \nabla P$, then $m=\nabla p$, where $p \in P$. Since $\sim p \vee \nabla p=1 \in \varphi(P)$ and $\varphi(P)$ is a prime filter then $\sim p \in \varphi(P)$ or $\nabla p \in \varphi(P)$. If $\sim p \in \varphi(P)=\complement \sim P$, then $\sim p \notin \sim P$. This contradiction shows that $m=\nabla p \in \varphi(P)$. Thus we have shown that $\nabla P \subseteq \varphi(P)$, so $F(\nabla P) \subseteq \varphi(P)$.

Lemma 2.5.6. If $P \in \mathbf{P}(L)$, is such that $P \subseteq \varphi(P)$ and $\nabla a \in P$, then $a \in \varphi(P)$.

Proof. By hypothesis (1) $P \subseteq \varphi(P)$, and (2) $\nabla a \in P$. Assume that (3) $a \notin \varphi(P)$, so $a \in \sim P$, this is, (4) $\sim a \in P$. From (2) and (4), we have: $a \wedge \sim a=$ $\nabla a \wedge \sim a \in P$, therefore $a \in P$, and thus by (1), $a \in \varphi(P)$, a contradiction.

Lemma 2.5.7. If $P \in \mathbf{P}(L)$ verifies $\varphi(P) \subseteq P$ then $F(\nabla P)=\varphi(P)$.
Proof. By Lemma 2.5.5, we know that (1) $F(\nabla P) \subseteq \varphi(P)$. Assume that $F(\nabla P) \subset \varphi(P)$, then there exists (2) $a \in \varphi(P)$ such that (3) $a \notin F(\nabla P)$. If $\sim \Delta a=\nabla \sim a \in P$ then since by Lemma 2.1.18, $P \cap B(L) \subseteq F(\nabla P)$ we have
that (4) $\nabla \sim a \in F(\nabla P)$. From (1) and (4) we deduce (5) $\nabla \sim a \in \varphi(P)=$ $Q \in \mathbf{P}(L)$. Since by hypothesis $\varphi(P) \subseteq P$ then (6) $Q=\varphi(P) \subseteq \varphi(\varphi(P))=$ $\varphi(Q)$. From (5) and (6) it follows, by Lemma 2.5.6, that $\sim a \in \varphi(Q)=P$ and therefore $a \notin \varphi(P)=Q$, which contradicts (2). Then (7) $\sim \Delta a \notin P$ and since $\Delta a \vee \sim \Delta a=1 \in P \in \mathbf{P}(L)$ we have that $\Delta a \in P$, and therefore $\Delta a \in P \cap B(L)$. Since by Lemma 2.1.18 $P \cap B(L) \subseteq F(\nabla P)$ we have that $\Delta a \in F(\nabla P)$ and since $\Delta a \leq a$, it follows that $a \in F(\nabla P)$, which contradicts (3).

Lemma 2.5.8. If $P \in \mathbf{P}(L)$ verifies $P \subseteq \varphi(P)$ then $F(\nabla \varphi(P))=P$.
Proof. Let $Q=\varphi(P)$ so from the hypothesis we have that $\varphi(Q)=\varphi(\varphi(P)) \subseteq$ $\varphi(P)=Q$, then by Lemma 2.5.7 $F(\nabla Q)=\varphi(Q)$, this is, $F(\nabla \varphi(P))=P$.

Corollary 2.5.9. If $P \in \mathbf{P}(L)$ then $P \in \mathbf{M}(L)$ or $\varphi(P) \in \mathbf{M}(L)$, this is if $P$ is a prime filter of $L$ then either $P$ or $\varphi(P)$ is a maximal deductive system.

Proof. Since $L$ is in particular a Kleene algebra we have that (1) $\varphi(P) \subseteq P$ or (2) $P \subseteq \varphi(P)$. If (1) occurs then by Lemma 2.5.7 we have that $F(\nabla P)=\varphi(P)$. But by Lemma 2.5.2 we know that $\varphi(P)=F(\nabla P) \in \mathbf{M}(L)$.

If (2) occurs then by Lemma 2.5 .8 we have that $F(\nabla \varphi(P))=P$. But since $\varphi(P)$ is a prime filter, by Lemma 2.5.2 we know that $P=F(\nabla \varphi(P)) \in \mathbf{M}(L)$.

Corollary 2.5.10. $\mathbf{M}(L) \subseteq \mathbf{P}(L)$, this is every maximal deductive system of $L$ is a prime filter of $L$.

Proof. Let $\mathbf{U}(L)$ be the set of all the maximal filters of $L$ and $M$ a maximal deductive system. Then there exists $U \in \mathbf{U}(L)$ such that (1) $M \subseteq U$. Since $\mathbf{U}(L) \subseteq \mathbf{P}(L)$, then $U$ is a prime filter and since $\varphi(U)$ is comparable to $U$, we have necessarily $(2) \varphi(U) \subseteq U$. So by the Corollary 2.5.9 $\varphi(U)$ is a maximal deductive system, and since by Lemma 2.5.3 there exists a unique maximal deductive system contained in $U$, we have that $M=\varphi(U) \in \mathbf{P}(L)$.

The following results are also well known:
Lemma 2.5.11. If $R$ is a bounded distributive lattice (with 0 and 1 as lower and upper bound, respectively) and $U$ is a proper filter of $R$, then the following conditions are equivalent:
a) $U$ is a maximal filter of $R$.
b) Given $x \notin U$ there exists $u \in U$ such that $x \wedge u=0$.

Lemma 2.5.12. If $R$ is a bounded distributive lattice (with 0 and 1 as lower and upper bound, respectively), then the following conditions are equivalent:
a) $P$ is a minimal prime filter of $R$.
b) $P=R \backslash I$, where $I$ is a maximal ideal of $R$.
and the following conditions are equivalent for a proper ideal $I$ of $R$ :
c) $I$ is a maximal ideal of $R$.
d) Given $p \notin I$ there exists $q \in I$ such that $p \vee q=1$.

Lemma 2.5.13. $\quad$ a) $\mathbf{p}(L) \subseteq \mathbf{D}(L)$;
b) $\mathbf{p}(L)=\mathbf{M}(L)$.

This is, every minimal prime filter of $L$ is a deductive system of $L$ and the set of the minimal prime filters of $L$ coincides with the set of the maximal deductive systems of $L$.

Proof. a) Let $P \in \mathbf{p}(L)$. If $0 \in \Delta P$, this is $0=\Delta p$ where $p \in P$, then $p \notin L \backslash P=I$. Then by Lemma 2.5.12 d), there exists $q \in I$, so $q \notin P$ and $1=p \vee q$, therefore $1=\Delta(p \vee q)=\Delta p \vee \Delta q=0 \vee \Delta q=\Delta q \leq q$, hence $q=1 \in P$, a contradiction. Thus we have $0 \notin \Delta P$ from where we deduce, using Corollary 2.1.17, that: (1) $F(\Delta P)$ is a proper deductive system of $L$. Let us prove now that $P=F(\Delta P)$. Let $p \in P$. Since $\Delta p \leq p$ and $\Delta p \in F(\Delta P)$ then $p \in F(\Delta P)$, so $P \subseteq F(\Delta P)$. Assuming that $P \subset F(\Delta P)$, then there exists a filter $P$ verifying (2) $x \in F(\Delta P)$, and (3) $x \notin P$. From (2) it follows that there exists $p \in P$ such that (4) $\Delta p \leq x$. From (3) and (4) we deduce that (5) $\Delta p \notin P$, and since $\Delta p \vee \sim \Delta p=1 \in P$, we have that (6) $\sim \Delta p \in P$. Since $\Delta p \in F(\Delta P)$ and $P \subset F(\Delta P)$, from (6) we deduce $\sim \Delta p \in F(\Delta P)$, and therefore $0=\Delta p \wedge \sim \Delta p \in F(\Delta P)$, which contradicts (1).
b) (i) Let $P \in \mathbf{p}(L)$ then by part a) $P$ is a deductive system. Assume that there exists $M \in \mathbf{M}(L)$ such that $P \subset M$, then there exists (7) $x \in M$ such that (8) $x \notin P$. Then (9) $\Delta x \in M$ and (10) $\Delta x \notin P$. Since $\Delta x \vee \sim \Delta x=1 \in P$, from (10) we have that $\sim \Delta x \in P$, and then (11) $\sim \Delta x \in M$. From (9) and (11): $0=\Delta x \wedge \sim \Delta x \in M$, a contradiction.
(ii) Let $M \in \mathbf{M}(L)$ then by Corollary 2.5.10, $M \in \mathbf{P}(L)$. If $M \notin \mathbf{p}(L)$, then there exists (12) $P \in \mathbf{p}(L)$ such that (13) $P \subset M$. From (12) it follows using part (i) that $P \in \mathbf{M}(L)$, which contradicts (13).

Corollary 2.5.14. Every prime filter of a Eukasiewicz algebra $L$ contains a unique minimal prime filter of $L$.

Proof. By Lemma 2.5.3, each prime filter contains a single maximal deductive system, and by Lemma 2.5 .13 b ), the set of maximal deductive systems of $L$ coincides with the set of the minimal prime filters of $L$.

Lemma 2.5.15. If $P \in \mathbf{p}(L)$ and $P \notin \mathbf{U}(L)$ then there exists a single $P^{\prime} \in \mathbf{P}(L)$ such that $P \subset P^{\prime}$, and more precisely, $P^{\prime}=\varphi(P)$.

Proof. Let $P \in \mathbf{p}(L)$, we know that (1) $\varphi(P) \subset P$ or (2) $P \subseteq \varphi(P)$. Since $\varphi(P) \in \mathbf{P}(L)$ and $P$ is a minimal prime filter minimal, condition (1) cannot hold. Let $U \in \mathbf{U}(L)$, be such that $\varphi(P) \subseteq U$, then $\varphi(U) \subseteq \varphi(\varphi(P))=P$, so since $P$ is a minimal prime filter, we must have $\varphi(U)=P$, so $U=\varphi(P)$.

Then $\varphi(P)$ is an ultrafilter that contains $P$. We can't have $\varphi(P)=P$ since by hypothesis $P \notin \mathbf{U}(L)$, so :

$$
P \subset \varphi(P) \text { and } \varphi(P) \text { is an ultrafilter. }
$$

Let $P^{\prime} \in \mathbf{P}(L)$ be such that (3) $P \subset P^{\prime}$. We shall prove that (4) $P^{\prime} \subseteq U=$ $\varphi(P)$. Indeed, if $P^{\prime} \nsubseteq U$ then there exists (5) $p^{\prime} \in P^{\prime}$ such that (6) $p^{\prime} \notin U$. From (6), (see Lemma 2.5.11 (b)), we infer that there exists (7) $u \in U$ such that (8) $u \wedge p^{\prime}=0$. If $u \in P^{\prime}$ then $0=u \wedge p^{\prime} \in P^{\prime}$, and therefore $P^{\prime}=L$, a contradiction.

Since $P^{\prime} \in \mathbf{P}(L)$ then by Lemma 2.5.2:

$$
\text { (9) } F\left(\nabla P^{\prime}\right) \in \mathbf{M}(L) \quad \text { and } \quad \text { (10) } F\left(\nabla P^{\prime}\right) \subseteq P^{\prime}
$$

By Lemma 2.5.13 (II), $\mathbf{p}(L)=\mathbf{M}(L)$, then (11) $P \in \mathbf{M}(L)$. By Lemma 2.5.3 we know that each prime filter of a Łukasiewicz algebra contains a single maximal deductive system, then from (9), (10), (11) and (3), we have that: (12) $F\left(\nabla P^{\prime}\right)=P$.

From (5) it follows that (13) $\nabla p^{\prime} \in \nabla P^{\prime} \subseteq F\left(\nabla P^{\prime}\right)=P$. Since $P \subseteq \varphi(P)=U$ and $P \in \mathbf{M}(L)$, by Lemma 2.5.3 we have that $P=F(\nabla U) \subseteq U$.

From (7) it follows that (14) $\nabla u \in F(\nabla U)=P$, and from (8), (13) and (14): $0=\nabla 0=\nabla\left(u \wedge p^{\prime}\right)=\nabla u \wedge \nabla p^{\prime} \in P$, a contradiction. Thus $P^{\prime} \subseteq U=\varphi(P)$.

Assume now that $P^{\prime} \subset U=\varphi(P)$, then we have $P \subset P^{\prime} \subset U$, so

$$
P=\varphi(U) \subset \varphi\left(P^{\prime}\right) \subset \varphi(P)=U
$$

From $\varphi\left(P^{\prime}\right) \subset U$, we deduce that there exists $u \in U$ such that $u \notin \varphi\left(P^{\prime}\right)$. We know that $P^{\prime}$ and $\varphi\left(P^{\prime}\right)$ are comparable. Assume that $P^{\prime} \subseteq \varphi\left(P^{\prime}\right)$. Since $u \wedge \sim u \leq u$ then: (i) $\sim u \wedge \nabla u=u \wedge \sim u \notin \varphi\left(P^{\prime}\right)$. From $u \notin \varphi\left(P^{\prime}\right)$ we get $\sim u \in P^{\prime}$ and since $\nabla u \in F(\nabla U)=P \subset P^{\prime}$, then $\sim u \wedge \nabla u \in P^{\prime} \subseteq \varphi\left(P^{\prime}\right)$ which contradicts (i).

If $\varphi\left(P^{\prime}\right) \subseteq P^{\prime}$, we also arrive to a contradiction.
Thus $U=\varphi(P)$ is the unique prime filter containing $P$ as a proper subset.
Corollary 2.5.16. If $P \in \mathbf{p}(L)$ and $P \notin \mathbf{U}(L)$ then the unique proper filter containing $P$ as a proper subset is $F=\varphi(P)$.

Proof. Let $F$ be a proper filter such that: (1) $P \subset F$, and assume that $F \notin \mathbf{U}(L)$, then there exists (2) $U \in \mathbf{U}(L)$ such that (3) $F \subset U$. From (1) and (3) we have: $P \subset U$, whence by Lemma 2.5.15, $U=\varphi(P)$. Let (4) $x \in U \backslash F$.

Since $F=\bigcap\left\{P^{\prime}: P^{\prime} \in \mathbf{P}(L), F \subseteq P^{\prime}\right\}$ and $x \notin F$, then there exists $P^{\prime} \in \mathbf{P}(L)$ such that (5) $F \subseteq P^{\prime}$ and (6) $x \notin P^{\prime}$. From (4) and (6) we have $P^{\prime} \neq U=\varphi(P)$. From (1) and (5): (7) $P \subset P^{\prime}$. Thus there exists a prime filter $P^{\prime}$, different from $\varphi(P)$ containing $P$ as a proper subset, which is impossible by Lemma 2.5.15.

### 2.6. Principal deductive systems and their quotient algebras

If $L$ is a Lukasiewicz algebra and $u \in L$, we will present a construction to determine the quotient algebra $L / D(u)$.

If $p, u \in B(L)$ are such that $p \leq u, L^{\prime}=[p, u]=\{x \in L: p \leq x \leq u\}$, and we define $\approx x=p \vee(\sim x \wedge u)$, for $x \in L^{\prime}$, then as we proved in Theorem 1.4.1 that the system $\left(L^{\prime}, u, \approx, \nabla, \wedge, \vee\right)$ is a Łukasiewicz algebra.

Therefore, if $u \in L$, and $L^{\prime}=[0, \Delta u]=(\Delta u]$ then $L^{\prime}$ is a Lukasiewicz algebra where if $x \in L^{\prime}, \approx x=0 \vee(\sim x \wedge \Delta u)=\sim x \wedge \Delta u$.

Lemma 2.6.1. The Eukasiewicz algebra $L / D(u)$ is isomorphic to $L^{\prime}=[0, \Delta u]$.
Proof. Given $x \in L$, let $h(x)=x \wedge \Delta u$, then since $0 \leq x \wedge \Delta u \leq \Delta u$ then $h$ is a function from $L$ to $[0, \Delta u]$. Furthermore, given $y \in[0, \Delta u]$, this is, $0 \leq y \leq \Delta u$, with $y \in L$ then $h(y)=y \wedge \Delta u=y$. Therefore $h$ is a surjective function with the elements of $[0, \Delta u]$ as invariants. We also have

H1) $h(x \vee y)=(x \vee y) \wedge \Delta u=(x \wedge \Delta u) \vee(x \wedge \Delta u)=h(x) \vee h(y)$.
$\mathrm{H} 2) \approx h(x)=\approx(x \wedge \Delta u)=\sim(x \wedge \Delta u) \wedge \Delta u=(\sim x \vee \sim \Delta u) \wedge \Delta u=$ $\sim x \wedge \Delta u=h(\sim x)$.
H3) $\nabla h(x)=\nabla(x \wedge \Delta u)=\nabla x \wedge \Delta u=h(\nabla x)$.
Since

$$
\begin{gathered}
\operatorname{Ker}(h)=\{x \in L: h(x)=\Delta u\}=\{x \in L: x \wedge \Delta u=\Delta u\}= \\
\{x \in L: \Delta u \leq x\}=F(\Delta u)=D(u),
\end{gathered}
$$

and the kernel of the natural epimorphism $L \rightarrow L / D(u)$ is $D(u)$ we have by Lemma 2.2.7 that $L / D(u)$ and $[0, \Delta u]$ are isomorphic.

Lemma 2.6.2. If $C$ is an equivalence class $(\bmod D(u))$ then $C \cap[0, \Delta u]$ contains a unique element.

Proof. (i) $C \cap[0, \Delta u] \neq \emptyset$. Let $x \in C$, so: $h(x) \wedge \Delta u=(x \wedge \Delta u) \wedge \Delta u=$ $x \wedge \Delta u$, and since $\Delta u \in D(u)$ it follows by condition C3) in Lemma 2.2.2 that $h(x) \equiv x(\bmod D(u))$ so since $x \in C$ we have that $h(x) \in C$ and therefore $h(x) \in C \cap[0, \Delta u]$.
(ii) The element is unique. Assume that $x, y \in C \cap[0, \Delta u]$ then (1) $x, y \in C$ and (2) $x, y \in[0, \Delta u]$. From (2) it follows by the previous lemma that $h(x)=x$ and $h(y)=y$. By (1) we have that $x \equiv y(\bmod D(u))$, so by condition C3) in Lemma 2.2.2, $x \wedge d=\wedge d$ with (3) $d \in D(u)$, then (4) $x \wedge h(d)=h(x) \wedge h(d)=h(x \wedge d)=h(y \wedge d)=h(y) \wedge h(d)=y \wedge h(d)$.

From (3), since $D(u)=\operatorname{Ker}(h)$ we have that (5) $h(d)=\Delta u$, so from (5) and (4) it follows that $x \wedge \Delta u=y \wedge \Delta u$ and since by (2) $x, y \leq \Delta u$ we have that $x=y$.

Lemma 2.6.3. (L. Monteiro (2002)) If $x \in[0, \Delta u]$ then

$$
C_{D(u)}(x)=[x, x \vee \nabla \sim u] .
$$

Proof. Let $y \in[x, x \vee \nabla \sim u]$, so (1) $x \leq y$ and (2) $y \leq x \vee \nabla \sim u$.
From (1) it follows that $1=\nabla \sim x \vee x \leq \nabla \sim x \vee y=x \rightarrow y$ then $x \rightarrow y=1$ and therefore (3) $x \rightarrow y \in D(u)$.

From (2) it follows that $1=\nabla \sim y \vee y \leq \nabla \sim y \vee x \vee \nabla \sim u$, so $\nabla \sim y \vee x \vee \nabla \sim u=1$ and therefore $\Delta u \wedge(\nabla \sim y \vee x \vee \nabla \sim u)=\Delta u$, this is $(\Delta u \wedge(\nabla \sim y \vee x)) \vee(\Delta u \wedge \nabla \sim u)=\Delta u \wedge(\nabla \sim y \vee x)=\Delta u$, and therefore $\Delta u \leq \nabla \sim y \vee x=y \rightarrow x$ then since $\Delta u \in D(u)$ we have that (4) $y \rightarrow x \in D(u)$.

From (1) it follows that $\sim y \leq \sim x$ and therefore $1=\nabla y \vee \sim y \leq \nabla y \vee \sim x=$ $\sim y \rightarrow \sim x$ so $\sim y \rightarrow \sim x=1$ and therefore (5) $\sim y \rightarrow \sim x \in D(u)$.

From (2) it follows that $\sim x \wedge \Delta u \leq \sim y$, so $\nabla x \vee(\sim x \wedge \Delta u) \leq \nabla x \vee \sim y=$ $\sim x \rightarrow \sim y$ then $\Delta u \leq \nabla x \vee \Delta u=1 \wedge(\nabla x \vee \Delta u)=(\nabla x \vee \sim x) \wedge(\nabla x \vee \Delta u)=$ $\nabla x \vee(\sim x \wedge \Delta u) \leq \sim x \rightarrow \sim y$, and since $\Delta u \in D(u)$, we have (6) $\sim x \rightarrow \sim y \in$ $D(u)$.

From (3), (4), (5) and (6) it follows by Lemma 2.2.2 that $y \equiv x(\bmod D(u))$ this is $y \in C_{D(u)}(x)$.

Conversely if $y \in C_{D(u)}(x)$, where (7) $0 \leq x \leq \Delta u$, this is $y \equiv x(\bmod D(u))$, then by Lemma 2.2.2, there exists $d \in D(u)=F(\Delta u)$ such that $x \wedge d=y \wedge d$ and
therefore $x \wedge d \wedge \Delta u=y \wedge d \wedge \Delta u$ so since $d \in F(\Delta u)$, this is $\Delta u \leq d$ and by (7) $x \leq \Delta u$ it follows that (8) $x=y \wedge \Delta u$, then since $y \wedge \Delta u \leq y$, we have that (9) $x \leq y$. From (8) it follows that

$$
\nabla \sim u \vee x=\nabla \sim u \vee(y \wedge \Delta u)=\nabla \sim u \vee y
$$

and since $y \leq \nabla \sim u \vee y$, we have that (10) $y \leq x \vee \nabla \sim u$. From (9) and (10) we have that $x \leq y \leq x \vee \nabla \sim u$, this is $y \in[x, x \vee \nabla \sim u]$.

The previous lemma generalizes a result by L. Monteiro in [66].

## CHAPTER 3

## Products and factors

### 3.1. Simple algebras

Definition 3.1.1. A Eukasiewicz algebra $L$ is said to be simple if:
Si1) L has more than one element,
Si2) every homomorphic image of $L$ has a single element or is isomorphic to $L$, this is, the only homomorphic images of $L$ are the trivial ones.

Lemma 3.1.2. A Eukasiewicz algebra $L$ is simple if and only if:
Si1) L has more than one element,
Si2') the only deductive systems of $L$ are $D(1)=\{1\}$ and $D(0)=L$.
Proof. Let $L$ be a simple Łukasiewicz algebra so Si1) holds. Let $D$ be a deductive system of $L$. By hypothesis $L / D$ is isomorphic to $L$ or to the singleton algebra. If $L \cong L / D$, then $C_{D}(x)=\{x\}$ and since $C_{D}(1)=D$ we have that $D=\{1\}=D(1)$. If $L / D$ has a single element then $C_{D}(x)=L$ for all $x \in L$, so $D=C_{D}(1)=L=D(0)$.

Conversely if $L$ is a Eukasiewicz algebra such that Si1) and Si2') hold, then the only homomorphic images of $L$ are $L / D(1)$ and $L / D(0)$, which are isomorphic to $L$ and the singleton algebra respectively.

Corollary 3.1.3. If $L$ is a simple Eukasiewicz algebra then $\{1\}$ is a maximal deductive system of $L$.

Lemma 3.1.4. A Lukasiewicz algebra $L$ is simple if and only if:
Si1) L has more than one element,
$\left.\mathrm{Si}^{2 \prime}\right) B(L)=\{0,1\}$.
This is a Lukasiewicz algebra $L$ is simple if and only if the boolean algebra $B(L)$ is simple.

Proof. Assume that $L$ is a simple Lukasiewicz algebra and that there exists (1) $b \in B(L)$ such that $(2) b \neq 0$ and (3) $b \neq 1$. We know that $D(x)=F(\Delta x)$ for all $x \in L$. Then by (1) $D(b)=F(\Delta b)=F(b)$. By (2), $D(b)=F(b) \neq L$ and by (3), $D(b)=F(b) \neq\{1\}=D(1)$. So Si2') does not hold, a contradiction.

Conversely assume that the Lukasiewicz algebra $L$ verifies Si1) and $\mathrm{Si}^{\prime \prime}$ ). We know that $D(1)$ is a deductive system. Let $D$ be a deductive system such that $D \neq D(1)$ so there exists (1) $d \in D$ such that (2) $d \neq 1$. From (1) it follows that (3) $\Delta d \in D$ and by Si2") we have (4) $\Delta d=0$ or (5) $\Delta d=1$. Since $\Delta d \leq d$, if (5) occurs then $d=1$, which contradicts (2) then (4) must hold. From (3) and (4) it follows that $0 \in D$ and therefore $D=L=D(0)$.

Corollary 3.1.5. If $D$ is a deductive system of a Eukasiewicz algebra $L$, with more than one element, it is necessary and sufficient that $D$ is a maximal deductive system of $L$ for $L / D=L^{\prime}$ to be simple.

Proof. Assume that $L^{\prime}=L / D$ is simple, then $L^{\prime}$ is an algebra with more than one element and therefore $D$ is a proper deductive system and by Lemma 3.1.4, $B\left(L^{\prime}\right)=\left\{0^{\prime}, 1^{\prime}\right\}$. Let $h$ be the natural homomorphism from $L$ to $L / D$. Since $h(\nabla x)=\nabla h(x)$ then $h: B(L) \rightarrow B(L / D)$. Furthermore $D=h^{-1}\left(1^{\prime}\right)$ and $I=h^{-1}\left(0^{\prime}\right)$ is an ideal of the lattice $L, B(L) \subseteq D \cup I, \Delta D=D \cap B(L)$ is a proper filter of $B(L)$ and it is easy to prove that $\Delta I=I \cap B(L)$ is a proper ideal of $B(L)$. Also, $\Delta D \cap \Delta I=\emptyset$ and $\Delta D \cup \Delta I=B(L)$, so $\Delta D$ is a prime filter of $B(L)$, this is $\Delta D$ is an ultrafilter of the boolean algebra $B(L)$, then by Lemma 2.1.19, $F(\Delta D)$ is a maximal deductive system of $L$ and by Lemma 2.1.19, $F(\Delta D)=D$.

Assume now that $D$ is a maximal deductive system of $L$, so $D$ is proper and therefore $L^{\prime}=L / D$ has more than one element. Let $b^{\prime} \in B\left(L^{\prime}\right)$ be such that $b^{\prime} \neq 1^{\prime}$ and let $h$ be the natural epimorphism from $L$ to $L / D$, so there exists $b \in L$ such that $h(b)=b^{\prime}$ and since $b^{\prime} \in B\left(L^{\prime}\right)$ we have that $b \in B(L)$ and $b \neq 1$. Since $D$ is a maximal deductive system, we know by Corollary 2.4.23 that (1) $b \in D$ or (2) $\sim b \in D$. If (1) occurs then $1^{\prime}=h(b)=b^{\prime}$, a contradiction, so (2) holds and therefore $\sim b^{\prime}=h(\sim b)=1^{\prime}$ and therefore $b^{\prime}=0^{\prime}$. Then $B\left(L^{\prime}\right)=\left\{0^{\prime}, 1^{\prime}\right\}$, this is, $L^{\prime}$ is simple.

From the previous corollary it follows that it is important to study the maximal deductive systems to determine simple algebras.

We shall denote with $\mathbf{B}$ the boolean algebra with two elements and with $\mathbf{T}$ the centered Łukasiewicz algebra with three elements, as shown in Example 1.2.3. The next lemma is a special case of the lemma proved by L. Monteiro in 1971 for monadic Łukasiewicz algebras [62].

Lemma 3.1.6. If $L$ is a Lukasiewicz algebra, with more than one element, then the following conditions are equivalent:
a) $L$ is simple,
b) For every $a \in L$, if $a \neq 1$ then $\Delta a=0$,
c) $L \cong \mathbf{B}$ or $L \cong \mathbf{T}$.

Proof. a) implies b): By Corollary 3.1.3, $M=\{1\}$ is a maximal deductive system so if $\overline{a \neq 1, a \notin M}$ then by the Theorem 2.4.21, there exists $m \in M=\{1\}$ such that $0=\Delta a \wedge m=\Delta a \wedge 1=\Delta a$.
b) implies $c$ ):

First case: $L \backslash B(L)=\emptyset$, this is $L=B(L)$. Then if (1) b $\in B(L)$ and (2) $b \neq 1$, by (1) $\Delta b=b$ and from (2) it follows by the hypothesis that $\Delta b=0$, which proves that $B(L)=\{0,1\}$ and therefore $L \cong \mathbf{B}$.

Second case: $L \backslash B(L) \neq \emptyset$. If $c \in L \backslash B(L)$ we have that (3) $c \neq 0$ and (4) $c \neq 1$. From (4) it follows by the hypothesis that $\Delta c=0$. If $\sim c=1$ then $c=0$, which contradicts (3), so $\sim c \neq 1$ and it follows by the hypothesis that $\Delta \sim c=0$ this is $\nabla c=1$. Therefore we have that for all $c \in L \backslash B(L), c$ is a center of the algebra $L$ and since the center is unique $L=\{0, c, 1\} \cong \mathbf{T}$.
c) implies $a)$ : If $L \cong \mathbf{B}$ or $L \cong \mathbf{T}$ then $L$ has more than one element and the only deductive systems of $L$ are $D(0)$ and $D(1)$.

Note that $\mathbf{B}$ is isomorphic to a subalgebra of $\mathbf{T}$.
Lemma 3.1.7. If $M$ is a maximal deductive system of a Eukasiewicz algebra $L$ then $L / M \cong \mathbf{B}$ or $L / M \cong \mathbf{T}$.

Proof. Since $M \in \mathbf{M}(L)$ then by Corollary 3.1.5, $L / M$ is a simple Łukasiewicz algebra, so by Lemma 3.1.6, 3) $L / M \cong \mathbf{B}$ or $L / M \cong \mathbf{T}$.

Lemma 3.1.8. If $L$ is a finite Eukasiewicz algebra, with more than one element, then $F(b)$ is a maximal deductive system of $L$ if and only if $b$ is an atom of the boolean algebra $B(L)$. (L. Monteiro, 2002)

Proof. Let $F(b)$ be a maximal deductive system, so in particular it is a deductive system, so by Lemma 2.4.4 we have that $b \in B(L)$. Assume there exists $x \in B(L)$ such that $0 \leq x \leq b$ so $F(b) \subseteq F(x) \subseteq F(0)=A$, and since by Lemma 2.4.4, $F(x)$ is a deductive system and $F(b)$ is maximal, it follows that $F(x)=F(b)$ or $F(x)=F(0)$, this is $x=b$ or $x=0$, which proves $b$ is an atom of $B(L)$.

Conversely assume that $b$ is an atom of $B(L)$. We know that $D(x)=F(\Delta x)$ for all $x \in L$, so from $b \in B(L)$ it follows that $D(b)=F(\Delta b)=F(b)$. Since $b \neq 0$ the deductive system $F(b)$ is proper. Assume that (1) $D$ is a deductive system such that (2) $F(b) \subseteq D$. Since $D$ is a filter and $L$ is finite (3) $D=F(x)$, for some $x \in L$. From (2) and (3) we have $F(b) \subseteq F(x)$ and therefore (4) $x \leq b$ so (5) $0 \leq \Delta x \leq \Delta b=b$. Since $b$ is an atom of $B(L)$ and $0, \Delta x \in B(L)$ then (6) $\Delta x=0$ or (7) $\Delta x=b$. Since $x \in D$ and $D$ is a deductive system we have that (8) $\Delta x \in D$. If (6) holds, from (6) and (8) it follows that $0 \in D$ and therefore $D=L$. If (7) holds, since $b=\Delta x \leq x$ then $b=x$ and therefore $D=F(b)$, which proves that $F(b)$ is a maximal deductive system.

Therefore if $L$ is a finite Łukasiewicz algebra with more than one element, the number of maximal deductive systems is the same as the number of atoms in the boolean algebra $B(L)$.

### 3.2. Cartesian product

Given a family of Łukasiewicz algebras $\left\{L_{i}\right\}_{i \in I}$, let $L=\prod_{i \in I} L_{i}$ be the cartesian product of the family of sets $\left\{L_{i}\right\}_{i \in I}$, this is, the set of all the functions $x: I \rightarrow$ $\bigcup_{i \in I} L_{i}$ such that for each element $i \in I$ they take a value $x(i)=x_{i} \in L_{i}$. Then $x_{i}$ is the coordinate with index $i$ of the element $x \in L$ and it is denoted by $x=\left[x_{i}\right]_{i \in I}$, $x=\left[x_{i}\right], x=\left(x_{i}\right)_{i \in I}$ or $x=\left(x_{i}\right)$.

We represent with $0_{i}$ and $1_{i}$ the bottom and top elements respectively of the algebras $L_{i}, i \in I$. Let $0=\left(0_{i}\right)_{i \in I}, 1=\left(1_{i}\right)_{i \in I}$ and given $x=\left(x_{i}\right)_{i \in I} \in L, y=$ $\left(y_{i}\right)_{i \in I} \in L$, put by definition:

$$
\nabla x=\left(\nabla x_{i}\right)_{i \in I}, \sim x=\left(\sim x_{i}\right)_{i \in I}, x \wedge y=\left(x_{i} \wedge y_{i}\right)_{i \in I}, x \vee y=\left(x_{i} \vee y_{i}\right)_{i \in I}
$$

It is easy to prove that $(L, 1, \sim, \nabla, \vee, \wedge)$ is a Eukasiewicz algebra which we call the cartesian product or direct product of the family of Łukasiewicz algebras
$\left\{L_{i}\right\}_{i \in I}$. Each one of the sets $L_{i}$ is called the $i$-th coordinate axis or $i$-th axis. If $L_{i}=L, \forall i \in I$, then $\prod_{i \in I} L_{i}$ is the set of all the functions from $I$ to $L$. In this case we write $L^{I}$ instead of $\prod_{i \in I} L_{i}$. If $I$ is finite, for example $I=\{1,2, \ldots, n\}$ then any of the following notations may be used:

$$
\prod_{i=1}^{n} L_{i} \quad \text { or } \quad L_{1} \times L_{2} \times \ldots \times L_{n}
$$

In this case if $x \in \prod_{i=1}^{n} L_{i}$ then: $x=(x(1), x(2), \ldots, x(n))=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
It is clear that $L_{1} \times L_{2} \neq L_{2} \times L_{1}$, but $L_{1} \times L_{2}$ and $L_{2} \times L_{1}$ are isomorphic Łukasiewicz algebras. It is also easy to prove that $L_{1} \times\left(L_{2} \times L_{3}\right) \cong\left(L_{1} \times L_{2}\right) \times L_{3}$.

Notice that if $L, L^{\prime}$ are Eukasiewicz algebras and $f$ is a fixed element of $L$, then the subset $C_{f}$ of $L \times L^{\prime}$ defined by $C_{f}=\left\{(f, y): y \in L^{\prime}\right\}$ is a Łukasiewicz algebra isomorphic to $L^{\prime}$, if we define $\sim(f, y)=(f, \sim y), \nabla(f, y)=(f, \nabla y)$ and in the same manner, if $f^{\prime}$ is a fixed element of $L^{\prime}$ then $C_{f^{\prime}}=\left\{\left(x, f^{\prime}\right): x \in L\right\} \subseteq L \times L^{\prime}$ is a Lukasiewicz algebra isomorphic to $L$ as long as we define $\sim\left(x, f^{\prime}\right)=\left(\sim x, f^{\prime}\right)$, $\nabla\left(x, f^{\prime}\right)=\left(\nabla x, f^{\prime}\right)$.

### 3.3. Factorization of an axled Łukasiewicz algebra

Notice the following facts:

- Every boolean algebra $A$ is a Łukasiewicz algebra where $\nabla x=\Delta x=x$ for all $x \in A$ and conversely, every Łukasiewicz algebra in which $\nabla x=$ $\Delta x=x$ for all $x$ is a boolean algebra.
- If $A$ is a boolean algebra then $e=0$ is the axis of $A$ regarded as a Łukasiewicz algebra, since $\Delta e=e=0$ and $(\Delta x \vee e) \wedge \nabla x=(x \vee 0) \wedge x=x$ for all $x \in A$.
- If $c$ is a center of a Eukasiewicz algebra $L$ then $c$ is an axis of the Łukasiewicz algebra $L$.
- In the remaining part of this section we will only consider Łukasiewicz algebras which are not boolean algebras nor centered algebras.

Gr. Moisil [27], p. 66-90 proved the following theorem.
Theorem 3.3.1. Every axled Eukasiewicz algebra is the cartesian product of a boolean algebra by a centered Łukasiewicz algebra.

To prove this theorem, Moisil used some results from ring theory (see section 1.9).
L. Monteiro, [62] presented a simpler proof of this theorem, using only results from the theory of Lukasiewicz algebras.

Recall this result about distributive lattices: Let $R$ be a distributive lattice with bottom element 0 and top element 1 . If $x \in R$ we write $[x)=F(x)=$ $\{y \in R: x \leq y\}$ and $(x]=I(x)=\{y \in R: y \leq x\}$. These sets are respectively a filter and an ideal of $R$ and are called principal filter and principal ideal. Furthermore, $F(x)$ is a distributive lattice with bottom element $x$ and top element 1, while $I(x)$ is a distributive lattice with bottom element 0 and top element $x$. We
denote with $B(R)$ the set of all the boolean elements of $R$, so $\{0,1\} \subseteq B(R)$. If $x \in B(R)$ we denote with $-x$ its boolean complement.

Lemma 3.3.2. If $R$ is a distributive lattice with bottom element 0 and top element 1 and $b \in B(R) \backslash\{0,1\}$ then $R$ is isomorphic to the cartesian product of the distributive lattices $I(b)$ and $I(-b)$ this is $R \cong I(b) \times I(-b)$.

The isomorphism from $R$ to $I(b) \times I(-b)$ is defined by $h(x)=(x \wedge b, x \wedge-b)$.
Lemma 3.3.3. If $R$ is a finite, non trivial, reducible distributive lattice, i.e. $R \cong R_{1} \times R_{2}$, where $R_{1}$ and $R_{2}$ are nontrivial distributive lattices then $R \cong \prod_{i=1}^{t}\left(a_{i}\right]$, where $\mathcal{A}(B(R))=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$.

Lemma 3.3.4. (L. Monteiro, [62]) If $L$ is a Eukasiewicz algebra and $b \in$ $B(L) \backslash\{0,1\}$ then $L \cong L / F(b) \times L / F(\sim b)$.

Proof. Recall that if $b \in B(L)$ then its boolean complement is $\sim b$. Since $b, \sim b \in B(L)$ then we know that $F(b)$ and $F(\sim b)$ are deductive systems so by Lemma 2.6.1, $L / F(b) \cong I(b)$ and $L / F(\sim b) \cong I(\sim b)$. Then by Lemma 3.3.2, the distributive lattice $L$ is isomorphic to the distributive lattice

$$
I(b) \times I(\sim b) \cong L \cong L / F(b) \times L / F(\sim b) .
$$

Since the function $h$ defined above is a lattice isomorphism we have that
(i) $h(0)=0$,
(ii) $h(1)=1$,
(iii) $h(x \wedge y)=h(x) \wedge h(y)$,
(iv) $h(x \vee y)=h(x) \vee h(y)$,

We prove now that
(v) $h(\nabla x)=\nabla h(x)$. Indeed, $\nabla h(x)=\nabla(x \wedge b, x \wedge \sim b)=$ $(\nabla x \wedge \nabla b, \nabla x \wedge \nabla \sim b)=(\nabla x \wedge b, \nabla x \wedge \sim b)=h(\nabla x)$.
In a similar manner we can prove
(vi) $h(\Delta x)=\Delta h(x)$.

Then since $h$ verifies (i) to (vi), by the results by L. Monteiro [52], it turns out that $h$ respects the operator $\sim$ and in consequence $h$ is a Eukasiewicz algebra homomorphism. Since $h$ is bijective then $h$ is a isomorphism.

Lemma 3.3.5. The cartesian product of a boolean algebra and a centered Eukasiewicz algebra is an axled Eukasiewicz algebra.

Proof. If $B$ is a boolean algebra and $C$ is a centered Łukasiewicz algebra with center $c$ then it easy to check that the element $e=(0, c) \in B \times C$ is an axis of the Łukasiewicz algebra $B \times C$.

Lemma 3.3.6. If $L$ is a Eukasiewicz algebra and $a \in L$ verifies $\Delta a=0$ then the quotient algebra $E=L / F(\nabla a)$ is a centered Łukasiewicz algebra (L. Monteiro [62]).

Proof. We shall prove that $c=C(a)$, where $C(a)$ is the equivalence class, $\bmod F(\nabla a)$, containing the element $a$, is the center of the quotient algebra $E=L / F(\nabla a)$. Indeed, we prove that $\sim C(a)=C(a)$ this is, we prove that $\sim a \equiv a \bmod F(\nabla a)$. It will be enough to notice that the following conditions are equivalent:
$\Delta a=0 \Longleftrightarrow$ by Lemma 1.4.10, $a \leq \sim a \Longleftrightarrow a=a \wedge \sim a \Longleftrightarrow$ by L9), $a=a \wedge \nabla a=a \wedge \sim a \Longleftrightarrow$ by L7), $a=\sim a \wedge \nabla a \Longleftrightarrow \sim a \equiv a \bmod F(\nabla a)$.

Lemma 3.3.7. (L. Monteiro [62]) If $L$ is an axled Eukasiewicz algebra with axis $e$ then the quotient algebra $B=L / F(\sim \nabla e)=L / F(\Delta \sim e)$ is a boolean algebra.

Proof. We prove that $\Delta C(x)=C(x)$ for all $x \in L$, this is, $\Delta x \equiv x \bmod$ $F(\Delta \sim e)$.

Since $L$ has an axis then $x=(\Delta x \vee e) \wedge \nabla x=\Delta x \vee(e \wedge \nabla x)$ for all $x \in L$, so $x \wedge \Delta \sim e=(\Delta x \wedge \Delta \sim e) \vee(e \wedge \Delta \sim e \wedge \nabla x)=(\Delta x \wedge \Delta \sim e) \vee(0 \wedge \nabla x)=$ $\Delta x \wedge \Delta \sim e$ and therefore $\Delta x \equiv x \bmod F(\Delta \sim e)$.

We prove now Theorem 3.3.1. Let $L$ be an axled Łukasiewicz algebra with axis $e$ that is not a boolean algebra nor a centered algebra. Then $\nabla e \neq 1$ and $\nabla e \neq 0$, because if $\nabla e=0$ then $e=0$ and $L$ would be a boolean algebra, contradicting the hypothesis. If $\nabla e=1$ then $e$ would be a center of $L$, contradicting the other hypothesis.

Thus we have that $\nabla e \in B(L) \backslash\{0,1\}$, so by Lemma 3.3.4, we know that

$$
L \cong L / F(\sim \nabla e) \times L / F(\nabla e)
$$

where by Lemma 3.3.7, $L / F(\sim \nabla e)$ is a boolean algebra and by Lemma 3.3.6, $L / F(\nabla e)$ is a centered Łukasiewicz algebra.

Remark 3.3.8. - If $L$ is a centered Eukasiewicz algebra, so an axled algebra, then we can write $L \cong P \times L$ where $P$ is a boolean algebra with a single element.

- If $L$ is a boolean algebra, then $L \cong L \times P$ where $P$ is the centered Eukasiewicz algebra with a single element.
Lemma 3.3.9. If $L$ is a finite non trivial Eukasiewicz algebra, different from $\mathbf{B}$ and $\mathbf{T}$, and $\mathcal{A}(B(L))=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$, then $L \cong \prod_{i=1}^{t}\left(a_{i}\right]$.

Proof. By hypothesis $B(L)$ is finite, non trivial, and $B(L) \neq\{0,1\}$, so by Lemma 3.3.3, $L \cong \prod_{i=1}^{t}\left(a_{i}\right]$.

Remark 3.3.10. Let $(A, \exists)$ be a finite monadic boolean algebra with $n$ atoms, $n \in \mathbb{N}$, and assume that the boolean algebra $K(A)=\{x \in A: \exists x=x\}$ has $h$ atoms $1 \leq h \leq n$. If the partition $\left\{X_{1}, X_{2}, \ldots, X_{h}\right\}$ of $\mathcal{A}(A)$ associated to $K(A)$ is such that: $N\left[X_{i}\right]=1$ for $1 \leq i \leq k$ and $N\left[X_{i}\right]>1$ for $k+1 \leq i \leq h$, then the atoms of $K(A)$ are $k_{i}=\bigvee_{x \in X_{i}} x, 1 \leq i \leq h$. By the results in section 1.10 we know that $\mathcal{L}(A)$ is a Eukasiewicz algebra such that the boolean algebras $B(\mathcal{L}(A))$
and $K(A)$ are isomorphic, so $B(\mathcal{L}(A))$ has $h$ atoms, and the atoms of $B(\mathcal{L}(A))$ are $C\left(k_{i}\right), 1 \leq i \leq h$. Moreover, if $1 \leq i \leq k$, then $k_{i} \in \mathcal{A}(A)$. By Lemma 1.10.5, $\left(C\left(k_{i}\right)\right] \cong \mathbf{B}$. If $k+1 \leq i \leq h$, then $k_{i}=\bigvee_{x \in X_{i}} x$. By Lemma 1.10.7 it follows that $\exists x$ is an atom of $K(A)$ for any $x \in X_{i}$, and since $x \leq k_{i}, \exists x \leq \exists k_{i}=k_{i}$, so since $k_{i}$ is an atom of $K(A)$, we must have $k_{i}=\exists x$ for some $x \in X_{i}$. Applying Lemma 1.10 .8 it follows that $(C(\exists x)]=\left(C\left(k_{i}\right)\right] \cong \mathbf{T}$ so from the assumptions taken and the previous lemmas we have that:

$$
\mathcal{L}(A) \cong \prod_{i=1}^{h}\left(C\left(k_{i}\right)\right] \cong \mathbf{B}^{k} \times \mathbf{T}^{h-k}
$$

### 3.4. Subdirect product of Łukasiewicz algebras

Given a non-empty family of Łukasiewicz algebras $\left\{L_{i}\right\}_{i \in I}$, consider the Lukasiewicz algebra $P=\prod_{i \in I} L_{i}$. Given $i \in I$, consider the $i$-th projection $\pi_{i}$ of $P$ over $L_{i}$ defined by $\pi_{i}(a)=a_{i} \in L_{i}$. We know that $\pi_{i}$ is a lattice homomorphism from $P$ onto $L_{i}$ such that $\pi_{i}(1)=1_{i}$ and $\pi_{i}(0)=0_{i}$. Furthermore, if $a \in P$ then $\sim \pi_{i}(a)=\sim a_{i}=\pi_{i}\left(\left(\sim a_{j}\right)\right)=\pi_{i}(\sim a), \nabla \pi_{i}(a)=\nabla a_{i}=\pi_{i}\left(\left(\nabla a_{j}\right)\right)=\pi_{i}(\nabla a)$ therefore each one of the $i$-th projections is an epimorphism from $P$ onto $L_{i}$.

Definition 3.4.1. If $S$ is a subalgebra of the Eukasiewicz algebra $P=\prod_{i \in I} L_{i}$ such that $\Pi_{i}(S)=L_{i}$, for all $i \in I$, then we say that $S$ is a subdirect product of the Eukasiewicz algebras $L_{i}$.

Lemma 3.4.2. Every subalgebra $S$ of the cartesian product $P=\prod_{i \in I} L_{i}$ is a subdirect product of Łukasiewicz algebras.

Proof. For each $i \in I$ let $L_{i}^{\prime}=\pi_{i}(S)$. Since the projections are homomorphisms from $P$ to $L_{i}$ then $L_{i}^{\prime}$ is a subalgebra of $L_{i}$. Let $P^{\prime}=\prod_{i \in I} L_{i}^{\prime}$ and $\pi_{i}^{\prime}$ be the $i$-th projection of $P^{\prime}$ on $L_{i}^{\prime}$. We prove that $S$ is subdirect product of $P^{\prime}$, this is, that $S$ is a subalgebra of $P^{\prime}$ and $\pi_{i}^{\prime}(S)=L_{i}^{\prime}$ for all $i \in I$. By the definition of $P^{\prime}$ it is immediate that the second condition holds. Given $s=\left(s_{i}\right)_{i \in I} \in S$, since $s_{i}=\pi_{i}(s) \in L_{i}^{\prime}$, then $s=\left(a_{i}\right)_{i \in I} \in P^{\prime}=\prod_{i \in I} L_{i}^{\prime}$. Therefore $S$ is a subset of $P^{\prime}$, and therefore $S$ is a subalgebra of $P^{\prime}$.

Definition 3.4.3. A Eukasiewicz algebra $L$ is said to be subdirectly reducible if $L$ is isomorphic to a subalgebra $L^{\prime}$ of a direct product $P=\prod_{i \in I} L_{i}$, and such that:

1. $\pi_{i}\left(L^{\prime}\right)=L_{i}$, for all $i \in I$.
2. None of the projections is an isomorphism.

A Eukasiewicz algebra is said to be subdirectly irreducible if it is not is subdirectly reducible.

### 3.5. Moisil's representation theorem

Once we know the simple algebras, we can build new ones using elemental methods as indicated before. The homomorphic images of the simple algebras, do not yield new ones.

Therefore, it remains to build cartesian products and to determine subalgebras of those products. This leads naturally to the following definition: A Łukasiewicz algebra is said to be semisimple if it is isomorphic to a subdirect product of simple Łukasiewicz algebras.

Theorem 3.5.1. (Moisil's representation Theorem) Every Eukasiewicz algebra with more than one element is subdirect product of simple Eukasiewicz algebras.

Proof. If the Łukasiewicz algebra $L$ is simple, then the theorem holds. Assume then $L$ is not simple, so $B(L) \neq\{0,1\}$ and there exists $b \in B(L)$ such that $b \neq 0, b \neq 1$. Therefore $\sim b \in B(L)$ and $\sim b \neq 0, \sim b \neq 1$, so there exist maximal deductive systems $M_{1}$ and $M_{2}$ such that $b \in M_{1}$ and $\sim b \in M_{2}$. Furthermore, $M_{1} \neq M_{2}$ because if $M_{1}=M_{2}$ then $b, \sim b \in M_{1}$, which contradicts Lemma 2.4.22. Therefore if $L$ is not simple there exist at least two different maximal deductive systems. Let $\mathbf{M}(L)$ be the set of the maximal deductive systems of $L$. For each $M \in \mathbf{M}(L)$ let $h_{M}$ be the natural epimorphism from $L$ to $L / M$. We know that if $M \in \mathbf{M}(L)$ then $L / M \cong \mathbf{B}$ or $L / M \cong \mathbf{T}$, so since $\mathbf{B}$ is isomorphic to a subalgebra of $\mathbf{T}$ we can assume that for each $M \in \mathbf{M}(L), h_{M}$ is a homomorphism from $L$ to $\mathbf{T}$. Let $\mathcal{F}=\mathbf{T}^{\mathrm{M}(L)}$. We already know that $\mathcal{F}$ is a Łukasiewicz algebra. We shall prove now that $L$ is isomorphic to a subalgebra $\mathcal{A}$ of $\mathcal{F}$. For this, consider the following transformation: given $f \in L$ put $\varphi(f)=F$ where $F$ is defined by:

$$
F(M)=h_{M}(f), \text { for every } M \in \mathbf{M}(L),
$$

so $F \in \mathcal{F}$. Then
H1) $\varphi(f \vee g)=\varphi(f) \vee \varphi(g)$, for all $f, g \in L$.
Let $k=f \vee g, \varphi(f)=F, \varphi(g)=G$ and $\varphi(k)=K$, so $K(M)=$ $h_{M}(k)=h_{M}(f \vee g)=h_{M}(f) \vee h_{M}(g)=F(M) \vee G(M)=(F \vee G)(M)$ which proves H1).
H2) $\varphi(\sim f)=\sim \varphi(f)$, for all $f \in L$.
Let $g=\sim f, \varphi(f)=F$, and $\varphi(g)=G$, so $G(M)=h_{M}(g)=$ $h_{M}(\sim f)=\sim h_{M}(f)=\sim F(M)=(\sim F)(M)$, which proves H 2$)$.
H3) $\varphi(\nabla f)=\nabla \varphi(f)$, for all $f \in L$.
Let $g=\nabla f, \varphi(f)=F$, and $\varphi(g)=G$, so $G(M)=h_{M}(g)=$ $h_{M}(\nabla f)=\nabla h_{M}(f)=\nabla F(M)=(\nabla F)(M)$, which proves H3).
Thus we have proved that $\varphi$ is a homomorphism and therefore $\mathcal{A}=\varphi(L)$ is a subalgebra of $\mathcal{F}$.
$\varphi$ is injective. Let $f, g \in L$ be such that (1) $f \neq g, \varphi(f)=F$ and $\varphi(g)=G$. To prove that $F \neq G$ we need to show that there exists at least a $M \in \mathbf{M}(L)$ such that $F(M) \neq G(M)$. From (1) it follows by Moisil's determination principle that (2) $\nabla f \neq \nabla g$ or (3) $\Delta f \neq \Delta g$.

If (2) occurs then (2a) $\nabla f \npreceq \nabla g$ or (2b) $\nabla g \not \approx \nabla f$. Assume (2a) holds (in the other case the proof is similar). From (2a) it follows that $D=F(\nabla f)$ is a deductive system and that $\nabla g \notin D$, therefore $D$ is a proper deductive system
and in consequence we know that $D$ is intersection of maximal deductive systems, so there exists a maximal deductive system $M$ such that $D \subseteq M$ and $\nabla g \notin M$, therefore $\nabla f \in M$ and $\nabla g \notin M$, so $1=h_{M}(\nabla f)=\nabla\left(h_{M}(f)\right)$ and $1 \neq h_{M}(\nabla g)=$ $\nabla\left(h_{M}(g)\right)$. Then $\nabla\left(h_{M}(f)\right) \neq \nabla\left(h_{M}(g)\right)$ and $F(M)=h_{M}(f) \neq h_{M}(g)=G(M)$.

If (3) holds then (3a) $\Delta f \not 又 \Delta g$ or (3b) $\Delta g \not \leq \Delta f$. Assume (3a) holds (in the other case the proof is similar). From (3a) it follows that $D=F(\Delta f)$ is a deductive system and that $\Delta g \notin D$, therefore $D$ is a proper deductive system. In consequence we know that $D$ is intersection of maximal deductive systems, so there exists a maximal deductive system $M$ such that $D \subseteq M$ and $\Delta g \notin M$. As a consequence $\Delta f \in M$ and $\Delta g \notin M$, so $1=h_{M}(\Delta f)=\Delta\left(h_{M}(f)\right)$ and $1 \neq h_{M}(\Delta g)=\Delta\left(h_{M}(g)\right)$. Therefore $\Delta\left(h_{M}(f)\right) \neq \Delta\left(h_{M}(g)\right)$ and then $F(M)=$ $h_{M}(f) \neq h_{M}(g)=G(M)$.

We have proved thus that the subalgebra $\mathcal{A}$ of $\mathcal{F}$ is isomorphic to $L$.
To prove that $\varphi$ is injective we could also proceed as follows: Let $f, g \in L$, $\varphi(f)=F$, and $\varphi(g)=G$, and assume $F=\varphi(f)=\varphi(g)=G$, this is, $F(M)=$ $G(M)$ for all $M \in \mathbf{M}(L)$, so $h_{M}(f)=h_{M}(g)$ for all $M \in \mathbf{M}(L)$. In consequence $1=h_{M}(f) \multimap h_{M}(g)=h_{M}(f \longmapsto g)$ and $1=h_{M}(g) \longmapsto h_{M}(f)=h_{M}(g \mapsto f)$, this is $f \hookrightarrow g, g \mapsto f \in\left(h_{M}\right)^{-1}(1)=M$ for all $M \in \mathbf{M}(L)$ and since $\bigcap_{M \in \mathbf{M}(L)} M=\{1\}$ then $f \hookrightarrow g=1=g \mapsto f$ and therefore $f=g$.

Theorem 3.5.2. If $L$ is a finite, not simple Eukasiewicz algebra with more than one element, and $\mathbf{M}(L)=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ the set of its maximal deductive systems, then:

$$
L \cong L / M_{1} \times L / M_{2} \times \cdots \times L / M_{n}
$$

Proof. Let $\mathcal{F}=\mathbf{T}^{\mathbf{M}(L)}$, as in Theorem 3.5.1, and let $\mathcal{A}=L / M_{1} \times L / M_{2} \times$ $\cdots \times L / M_{n}$. We know that the mapping $\varphi: L \rightarrow \mathcal{F}$, defined by: $\varphi(f)=F$, where $F\left(M_{i}\right)=h_{M_{i}}(f)$, for $i=1,2, \ldots, n$, and every $f \in L$, is a homomorphism from $L$ to $\mathcal{F}$ and that since $\bigcap_{i=1}^{n} M_{i}=\{1\}$ then $\varphi$ is injective, also as in Theorem 3.5.1. Observe that $\mathcal{A} \subseteq \mathcal{F}$, once we identify $L / M_{i}$ with a subalgebra of $\mathbf{T}$.

Let us prove that the image of $\varphi$ is $\mathcal{A}$. Since $L$ is a finite, not simple Łukasiewicz algebra with more than one element, then $B(L)$ is a finite boolean algebra with more than one atom. Let $b_{1}, b_{2}, \ldots, b_{n}$ be the atoms of the boolean algebra $B(L)$, then by Lemma 3.1.8, $\left\{M_{i}=F\left(b_{i}\right): 1 \leq i \leq n\right\}$ is the set of the maximal deductive systems of $L$ and all the $L / M_{i}, 1 \leq i \leq n$ are simple algebras. In a similar manner to that indicated in the proof of Theorem 3.5.1 we can prove that $L$ is isomorphic to a subalgebra of the algebra $\mathcal{F}$ where the isomorphism is defined by $\varphi(x)=\left(h_{M_{1}}(x), h_{M_{2}}(x), \ldots, h_{M_{n}}(x)\right)$ and where $h_{M_{i}}$ is the natural epimorphism from $L$ onto $L / M_{i}$. Given $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathcal{A}$ then for each $y_{i} \in L / M_{i}$ there exists $x_{i} \in L$ such that $h_{M_{i}}\left(x_{i}\right)=y_{i}$. Let $x=\bigvee_{i=1}^{n}\left(x_{i} \wedge b_{i}\right)$. Since $b_{i} \in B(L)$ then $h_{M_{j}}\left(b_{i}\right) \in B\left(L_{j}\right)=\{0,1\}$ so $h_{M_{j}}\left(b_{i}\right)=0$ for $j \neq i$ and $h_{M_{j}}\left(b_{j}\right)=1$. Therefore $h_{M_{j}}(x)=h_{M_{j}}\left(\bigvee_{i=1}^{n}\left(x_{i} \wedge b_{i}\right)\right)=\bigvee_{i=1}^{n}\left(h_{M_{j}}\left(x_{i}\right) \wedge h_{M_{j}}\left(b_{i}\right)\right)=$ $h_{M_{j}}\left(x_{j}\right) \wedge h_{M_{j}}\left(b_{j}\right)=h_{M_{j}}\left(x_{j}\right) \wedge 1=h_{M_{j}}\left(x_{j}\right)=y_{j}$. This proves that $\varphi(x)=y$.

Remark 3.5.3. Every deductive system $D$ of $L$ is in particular a filter and since $L$ is a finite distributive lattice, all its filters are principal, so $D=F(x)$, for some $x \in L$ and since $D$ is a deductive system and $x \in F(x)=D$ it follows that $\Delta x \in F(x)$ and therefore $D=F(b)$ with $b \in B(L)$. On the other hand, we know by Lemma 3.1.8 that $M$ is a maximal deductive system of $L$ if and only if $b$ is an atom of $B(L)$. Furthermore (1) $L / M_{i} \cong \mathbf{B}$ or (2) $L / M_{i} \cong \mathbf{T}$ for $1 \leq i \leq n$. We can assume that $M_{1}, M_{2}, \ldots, M_{k}$ are deductive systems verifying (1) and $M_{k+1}, \ldots, M_{n}$ are deductive systems verifying (2).

Notice that it could be the case that in $L$ there are no deductive systems verifying (1) or (2), but there are always deductive systems verifying one of the two conditions.

Then the number of elements of $\prod_{i=1}^{n} L / M_{i}$ is equal to $2^{k} \times 3^{n-k}$.

### 3.6. Injective Łukasiewicz algebras

Definition 3.6.1. A Eukasiewicz algebra $C$ is said to be injective if for any Eukasiewicz algebra $L$ and any $S$, subalgebra of $L$, for every homomorphism $h$ : $S \rightarrow C$ there exists a homomorphism $H: L \rightarrow C$ extending $h$, this is $H(s)=h(s)$ for all $s \in S$.
A. Monteiro in the lectures given in 1963, [36] posed to his students the problem of determining the injective Lukasiewicz algebras and conjectured that they were the complete centered Łukasiewicz algebras. L. Monteiro, published an article in 1965, [57], proving this conjecture and that this result is a consequence of an important theorem due to R. Sikorski [76].

Given that every Łukasiewicz algebra is a bounded distributive lattice, it is clear that:

Lemma 3.6.2. The cartesian product of complete Eukasiewicz algebras is a complete Łukasiewicz algebra.

Theorem 3.6.3. Every Eukasiewicz algebra $L$ is isomorphic to a subalgebra of a centered and complete Łukasiewicz algebra.

Proof. If $L$ is trivial then clearly $L$ is centered and complete. If $L$ is simple then we know that $L \cong \mathbf{T}$ or $L \cong \mathbf{B}$ and in this latter case $\mathbf{B} \cong\{0,1\} \subset \mathbf{T}$. If $L$ is not trivial, nor simple then by Theorem 3.5.1 we know that $L$ is isomorphic to an $L$-subalgebra of the Łukasiewicz algebra $P=\mathbf{T}^{\mathbf{M}(L)}$ where $\mathbf{M}(L)$ is the set of the maximal deductive systems of $L$ and since $P \cong \prod_{M \in \mathbf{M}(L)} T_{M}$ where $T_{M}=\mathbf{T}$ for all $M \in \mathbf{M}(L)$, and $\mathbf{T}$ is a complete Łukasiewicz algebra then by Lemma 3.6.2 $P$ is complete. Since the cartesian product of centered Lukasiewicz algebras is a centered Łukasiewicz algebra, then $P$ is centered.

Theorem 3.6.4. (L. Monteiro, [57]) A Lukasiewicz algebra $C$ is injective if and only if $C$ is complete and centered.

Proof. We will only sketch the proof. Assume $C$ is injective, then by Theorem 3.6.3, $C$ is isomorphic to a $L$-subalgebra $S$ of a complete and centered

Lukasiewicz algebra $A$. Let $f$ be an isomorphism from $C$ to $S$ and consider the isomorphism $h=f^{-1}: S \rightarrow C$. Then since $C$ is injective, $h$ can be extended to a homomorphism $H: A \rightarrow C$. Given $\left\{x_{i}\right\}_{i \in I} \subseteq C$ then $\left\{f\left(x_{i}\right)\right\}_{i \in I} \subseteq S \subseteq A$, so since $A$ is complete, there exists $s=\bigvee H\left(x_{i}\right) \in A$. Then it is proved that $H(s) \in C$ is the supremum of $\left\{x_{i}\right\}_{i \in I}$, so $C$ is complete. If $c$ is the center of $A$ then one can prove that $H(c)$ is a center of $C$.

Now assume that $C$ is a complete Lukasiewicz algebra with center $c, A$ is a Łukasiewicz algebra, $S$ an $L$-subalgebra of $A$, and $h: S \rightarrow C$ a homomorphism. Consider the boolean algebras $B(A), B(S)$ and $B(C)$. Since $C$ is complete we know by Corollary 1.12 .6 that $B(C)$ is a complete boolean algebra. Let $f$ be the restriction of $h$ to $B(S)$ so $f$ is a boolean homomorphism, so by R. Sikorski's theorem [76], there exists a boolean homomorphism $F: B(A) \rightarrow B(C)$ extending $f$. Then we prove that the function $H: A \rightarrow C$ defined by $H(x)=$ $(F(\Delta x) \vee c) \wedge F(\nabla x)$ is a homomorphism from $A$ to $C$ extending $h$.

This result was generalized by R. Cignoli in 1975, [14] who proved that:
Theorem 3.6.5. A Kleene algebra is injective if and only if it is a three valued complete Post algebra.

## CHAPTER 4

## Free algebras

### 4.1. Introduction

In this chapter we will determine the Łukasiewicz algebras $L_{n}$ with a finite number $n$ of free free generators and prove that the number of elements of this algebra is given by:

$$
N\left(L_{n}\right)=2^{2^{n}} \cdot 3^{3^{n}-2^{n}} .
$$

Definition 4.1.1. Given a cardinal number $\alpha>0$ we say that $L$ is a Eukasiewicz algebra with $\alpha$ free generators, if

L1) $L$ contains a subset $G$ of cardinality $\alpha$ such that $L S(G)=L$,
L2) every mapping $f: G \rightarrow L^{\prime}$, where $L^{\prime}$ is an arbitrary Eukasiewicz algebra, can be extended to a homomorphism $h_{f}$, necessarily unique, from $L$ to $L .{ }^{\prime}$
Under these conditions we say that $G$ is a set of free generators of $L$ and a Eukasiewicz algebra is said to be free if it has a set of free generators. To make explicit the cardinal number $\alpha$ we denote $L=L_{\alpha}$.

Since the notion of Łukasiewicz algebra is given through identities, we know by a result of Garret Birkhoff [8], that the Lukasiewicz algebra $L_{\alpha}$ with a set of free generators $G=\left\{g_{i}\right\}_{i \in I}$ for a given cardinal $\alpha$ exists and is unique (up to isomorphisms).

We shall study the algebras $L_{n}$, where $n$ is a natural number $\geq 1$, this is $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$.

### 4.2. Determination of the Lukasiewicz algebra $L_{n}$ with $n$ free generators

The following results were indicated by A. Monteiro in 1966, [44], and the proofs were published in 1998 [49].

We saw that if $L$ is a non trivial Lukasiewicz algebra, then $L$ is isomorphic to a subalgebra of

$$
\prod_{M \in \mathbf{M}(L)} L / M
$$

and that if $\mathbf{M}(L)$ is a finite set then $L \cong \prod_{M \in \mathbf{M}(L)} L / M$. We shall prove that the set $\mathbf{M}\left(L_{n}\right)$ is finite, from where it follows that the set of its prime filters is finite, and we know that this set determines $L_{n}$. By Lemma 3.1.7 if $M \in \mathbf{M}\left(L_{n}\right)$ then $L_{n} / M \cong \mathbf{B}$ or $L_{n} / M \cong \mathbf{T}$. Identifying isomorphic algebras we have that $L_{n} / M=\mathbf{B}$ or $L_{n} / M=\mathbf{T}$

Let $M$ be a maximal deductive system of $L_{n}$ and $h_{M}$ the natural homomorphism from $L_{n}$ onto the quotient algebra $L_{n} / M$. Since $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is
the set of free generators of $L_{n}$, and $h_{M}$ is the epimorphism from $L_{n}$ to $L_{n} / M$, then by Lemma 2.2.9, $h_{M}(G)$ is a set of generators of $L_{n} / M$. Now we define $k_{M}=i_{M} \circ h_{M}$, where $i_{M}$ is the embedding from $L_{n} / M$ to $\mathbf{T}$. Since we identify $L_{n} / M$ with a subalgebra of $\mathbf{T}$, we can think that $k_{M}$ is $h_{M}$. The homomorphism $h_{M}$ determines a mapping $f$ from $G$ to $\mathbf{T}$, namely the restriction, $h_{M_{\mid G}}$ of $h_{M}$ to the set $G$. Since $L_{n}$ is a free algebra, $h_{M}$ is the only homomorphism that coincides with $f$ when restricted to $G$.

Put by definition: $\psi(M)=h_{M_{\mid G}}$, so $\psi: \mathbf{M}\left(L_{n}\right) \rightarrow \mathbf{T}^{G}$. If $f$ is a function from $G$ to $\mathbf{T}$, then there exists a unique homomorphism $h_{f}$ from $L_{n}$ to $\mathbf{T}$ extending $f$. Let $M=\operatorname{Ker}\left(h_{f}\right)$. By Corollary 3.1.5, $M$ is a maximal deductive system.

We prove now that $h_{M}=h_{f}$. Let $x \in L_{n}$.
If $x \in M=\operatorname{Ker}\left(h_{f}\right)$, then $h_{f}(x)=1$. At the same time, $h_{M}(x)=[x]_{M}=$ $[1]_{M}=1$ so $h_{M}(x)=1=h_{f}(x)$.

If $x \in \sim \operatorname{Ker}\left(h_{f}\right)$, then $x=\sim y$ for some $y \in \operatorname{Ker}\left(h_{f}\right)$, so $h_{f}(x)=h_{f}(\sim y)=\sim$ $h_{f}(y)=\sim 1=0$. On the other hand, $h_{M}(x)=[x]_{M}=[\sim y]_{M}=\sim[y]_{M}=\sim[1]_{M}$ $=[0]_{M}$ so $h_{M}(x)=0=h_{f}(x)$.

If $x \notin \operatorname{Ker}\left(h_{f}\right) \cup \sim \operatorname{Ker}\left(h_{f}\right)$, then $h_{f}(x) \neq 0$ and $h_{f}(x) \neq 1$, so we must have $h_{f}(x)=c$. In a similar way, $h_{M}(x)=[x]_{M} \neq[0]_{M}$ and $h_{M}(x) \neq[1]_{M}$ so $h_{M}(x)=c$.

We have proved that $h_{\operatorname{Ker}\left(h_{f}\right)}=h_{f}$, so $\psi\left(\operatorname{Ker}\left(h_{f}\right)\right)=h_{\operatorname{Ker}\left(h_{f}\right)_{\mid G}}=h_{f_{\mid G}}=f$ and therefore $\psi$ is surjective. This already proves that the set $\mathbf{M}\left(L_{n}\right)$ is finite, but we will show that there exists a biunivocal correspondence between the maximal deductive systems of $L_{n}$ and the mappings from $G$ to $\mathbf{T}$. Indeed, let $M_{1}$ and $M_{2}$ be two maximal deductive systems of $L_{n}$ and let $h_{M_{1}}: L_{n} \rightarrow L_{n} / M_{1}$ and $h_{M_{2}}: L_{n} \rightarrow L_{n} / M_{2}$ be the respective natural homomorphisms. Let $f_{1}$ and $f_{2}$ be the restrictions of $h_{M_{1}}$ and $h_{M_{2}}$, respectively, to $G$, so $f_{1}: G \rightarrow \mathbf{T}, f_{2}: G \rightarrow \mathbf{T}$.

Assume that $\psi\left(M_{1}\right)=\psi\left(M_{2}\right)$ this is, that $f_{1}(g)=f_{2}(g)$, for all $g \in G$. Then $h_{M_{1}}(g)=f_{1}(g)=f_{2}(g)=h_{M_{2}}(g)$. The function $f_{1}=f_{2}$ admits a unique extension to $L_{n}$ and since $h_{M_{1}}$ and $h_{M_{2}}$ are both extensions of $f_{1}=f_{2}, h_{M_{1}}(x)=h_{M_{2}}(x)$, for all $x \in L_{n}$. Therefore $M_{1}=M_{2}$.

Thus we have proved that there exist as many maximal deductive systems as mappings from $G$ to $\mathbf{T}$. The number of mappings from $G$ to $\mathbf{T}$ is $3^{n}$, therefore there exist $3^{n}$ different maximal deductive systems in $L_{n}$, this is $3^{n}$ different minimal prime filters.

Let us determine the number of maximal deductive systems $M$, such that $L_{n} / M=\mathbf{B}$. In this case, the natural homomorphism $h_{M}$ goes from $L_{n}$ onto $\mathbf{B}$ and therefore the restriction $f$ of $h_{M}$ to $G$ is a mapping from $G$ to $\mathbf{B}=\{0,1\}$.

The number of such mappings is, evidently, $2^{n}$. Let us see that the set of these maximal deductive systems of $L_{n}$ coincides with the set of ultrafilters of $L_{n}$.

Indeed, let $M$ be a maximal deductive system of $L_{n}$ such that (1) $L_{n} / M=\mathbf{B}$ and let $h: L_{n} \rightarrow \mathbf{B}$ be the natural homomorphism. Let $U$ be an ultrafilter such that (2) $M \subseteq U$. In Corollary 2.5 .10 we proved that $M=\varphi(U)$ so $\sim M=\complement U$.

Let $S=M \cup \sim M=M \cup \complement U$. We prove now that $S$ is a subalgebra of $L_{n}$ containing $G$. Indeed:
(i) $G \subseteq S$.

Let $g \in G$, if $g \in M$ then $g \in S$. If $g \notin M$ then by (1) $h_{M}(g)=0$ and therefore $h_{M}(\sim g)=\sim h_{M}(g)=1$ so $\sim g \in M$ and in consequence $g \in \sim M \subseteq S$.
(ii) $S$ is a subalgebra.

Let $s \in S$, so $s \in M$ or $s \in \sim M$. In the former case $\sim s \in \sim M \subseteq S$. In the latter, $s=\sim m$ where $m \in M$ so $\sim s=m \in M \subseteq S$.

Let $s, t \in S$, so we can have the following cases (3) $s, t \in M$, (4) $s, t \in \sim M$ and (5) $s \in M, t \in \sim M$.
(3) Since $M$ is a filter, $s \wedge t \in M \subseteq S$.
(4) $s=\sim m_{1}$ with $m_{1} \in M$ y $t=\sim m_{2}$ with $m_{2} \in M$, so $s \wedge t=$ $\sim\left(m_{1} \vee m_{2}\right)$ and since $M$ is a filter, $m_{1} \in M$ y $m_{1} \leq m_{1} \vee m_{2}$ we have that $m_{1} \vee m_{2} \in M$ and therefore $s \wedge t \in \sim M$.
(5) $t=\sim m$ with $m \in M$, so $s \wedge t=s \wedge \sim m=\sim(\sim s \vee m)$. Since $m \in M, m \leq \sim s \vee m$ and $M$ is a filter, we have that $\sim s \vee m \in M$ and therefore $s \wedge t \in \sim M$.

To complete the proof that $S$ is a subalgebra it only remains to show that $S$ verifies (*) "If $s \in S$ then $\nabla s \in S$ ".

In order to do this we shall prove first that $B\left(L_{n}\right) \cap(U \backslash M)=\emptyset$. Indeed, if there is some $b \in B\left(L_{n}\right) \cap(U \backslash M)$ then (6) $b \in B\left(L_{n}\right),(7) b \in U$ and (8) $b \notin M$. We know that if $b$ is a boolean element of a Łukasiewicz algebra, its boolean complement is precisely $\sim b$ (see [11], [59]), so from (6) it follows that (9) $b \vee \sim b=1 \in M$. By the Corollary 2.5.10, $M$ is a prime filter of $L_{n}$, so from (9) and (8) it follows that (10) $\sim b \in M \subseteq U$. From (7) and (10) we conclude that $0=\sim b \wedge b \in U$, a contradiction.

From $B\left(L_{n}\right) \cap(U \backslash M)=\emptyset$ it follows that $B\left(L_{n}\right) \subseteq \complement(U \backslash M)=$ $\complement U \cup M=S$, and therefore $\left({ }^{*}\right)$ holds.

Therefore since $S$ is a subalgebra of $L_{n}$ containing the generators of $L_{n}$ we have that $S=L_{n}$, this is $L_{n}=M \cup \complement U=M \cup(U \backslash M) \cup \complement U$ and therefore $U \backslash M \subseteq M \cup \complement U$, so $U \backslash M=(U \backslash M) \cap(M \cup \complement U)=(U \cap \complement M) \cap(M \cup \complement U)=$ $(U \cap \complement M \cap M) \cup(U \cap \complement M \cap \complement U)=\emptyset$. From $U \backslash M=\emptyset$ it follows that $U \subseteq M$ and since $M \subseteq U$ we have finally that $M=U$ and therefore $M$ is an ultrafilter.

Conversely, if an ultrafilter $M$ is a deductive system, then $M$ is a maximal deductive system. Indeed, if $M^{\prime}$ is a deductive system such that $M \subset M^{\prime} \subset L_{n}$ then $M^{\prime}$ would be a proper filter containing $M$ as a proper part, which contradicts that $M$ is an ultrafilter. Let us prove in this case that $L_{n} / M=\mathbf{B}$. If $L_{n} / M=\mathbf{T}$, and $h_{M}$ is the natural epimorphism from $L_{n} \rightarrow \mathbf{T}$, then $h_{M}^{-1}(1)=M$, and there exists $a \in L_{n}$ such that $h_{M}(a)=c$. Furthermore $U=h_{M}^{-1}([c))$ is an ultrafilter of $L_{n}$ such that $U \neq M$, so $M=h_{M}^{-1}(1) \subset h_{M}^{-1}([c))=U$, a contradiction. Therefore $L_{n} / M=\mathbf{B}$.

Then, there exist $2^{n}$ maximal deductive systems that are ultrafilters and therefore $3^{n}-2^{n}$ maximal deductive systems that are not ultrafilters.

For each maximal deductive system $M$ that is not an ultrafilter, $L_{n} / M=\mathbf{T}$. We have also proved that each maximal deductive system $M$ is properly contained in one and only one ultrafilter $U$. Therefore, the Hasse diagram of the set of all the prime filters of $L_{n}$ is the following:


Therefore, $L_{n}$ is the cartesian product of the chains in the following Hasse diagram:


From where it follows that finally

$$
L_{n}=\mathbf{B}^{2^{n}} \times \mathbf{T}^{3^{n}-2^{n}}
$$

and

$$
N\left(L_{n}\right)=2^{2^{n}} \cdot 3^{3^{n}-2^{n}}
$$

The diagram for $L_{1}$ was displayed in Example 1.3.2.
R. Cignoli and A. Monteiro presented a geometric construction of the Łukasiewicz algebra with an arbitrary set of free generators [33], which will be laid out in Chapter VI.
L. Monteiro, A. Figallo and A. Ziliani [71], presented a construction of the Łukasiewicz algebras with a given poset of free generators.

### 4.3. Free Moisil algebras with a finite number of free generators

Axled three-valued Łukasiewicz algebra, see section 1.3, were introduced by Gr. M. Moisil [27]. A. Monteiro called these algebras three valued Moisil algebras or Moisil algebras.

It is clear that if $L, L^{\prime}$ are Moisil algebras, $e$ is the axis of $L$ and $h: L \rightarrow L^{\prime}$ is a homomorphism then $h(e)$ is an axis of $h(L)$.

If $L$ is a Moisil algebra and $X \subseteq L$ we denote with $M S(X)$ the Moisil subalgebra of $L$ generated by $X$. Clearly if $L$ is a Moisil algebra and $e$ is its axis then, $M S(X)=L S(X \cup\{e\})$.

Since the notion of Moisil algebra can be defined through identities, we know by a general result due to Garret Birkhoff [8], that there exists a Moisil algebra $M_{\alpha}$ with a set of free generators $G$ of any given cardinality $\alpha$ and it is unique (up to isomorphisms).

We denote with $M_{n}$ the Moisil algebra with a set $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ of free generators.

We will follow the method used in section 4.2.

We saw that if $L$ is a non trivial Łukasiewicz algebra, then $L$ is isomorphic to a subalgebra of

$$
\prod_{D \in \mathbb{M}(L)} L / D,
$$

and that if the set $\mathbf{M}(L)$ is finite then $L \cong \prod_{D \in \mathbf{M}(L)} L / D$.
We know that if $D \in \mathbf{M}\left(M_{n}\right)$ then $M_{n} / D \cong \mathbf{B}$ or $M_{n} / D \cong \mathbf{T}$. Identifying isomorphic algebras we have that $L_{n} / M=\mathbf{B}$ or $L_{n} / M=\mathbf{T}$.

Let $\mathbf{M}_{1}\left(M_{n}\right)=\left\{D \in \mathbf{M}\left(M_{n}\right): M_{n} / D=\mathbf{B}\right\}$ and $\mathbf{M}_{2}\left(M_{n}\right)=\left\{D \in \mathbf{M}\left(M_{n}\right):\right.$ $\left.M_{n} / D=\mathbf{T}\right\}$.

If $D \in \mathbf{M}_{1}\left(M_{n}\right)$, let $h_{D}$ be the natural homomorphism from $M_{n}$ onto the quotient algebra $M_{n} / D$. The homomorphism $h_{D}$ determines a mapping $f$ from $G$ to $\mathbf{B}$, the restriction, $h_{D_{\mid G}}$ of $h_{D}$ to the set $G$, this is $f(g)=h_{D_{\mid G}}(g)=h_{D}(g)$, for all $g \in G$. We put by definition: $\psi_{1}(D)=h_{D_{\mid G}}$, so $\psi_{1}: \mathbf{M}_{1}\left(M_{n}\right) \rightarrow \mathbf{B}^{G}$. In an similar way as seen in section 4.2 , it follows that the mapping $\psi_{1}$ is surjective.

We prove now that $\psi_{1}$ is injective. Indeed, let $D_{1}, D_{2} \in \mathbf{M}_{1}\left(M_{n}\right), m_{1}: M_{n} \rightarrow$ $M_{n} / D_{1}$ and $m_{2}: M_{n} \rightarrow M_{n} / D_{2}$ the respective natural homomorphisms. Let $f_{1}$ and $f_{2}$ be the restrictions of $m_{1}$ and $m_{2}$ respectively, to the set $G$, so $f_{1}: G \rightarrow \mathbf{B}$, $f_{2}: G \rightarrow \mathbf{B}$. Assume that $\psi_{1}\left(D_{1}\right)=\psi_{1}\left(D_{2}\right)$, this is that $f_{1}(g)=f_{2}(g)$, for all $g \in$ $G$. Then $m_{1}(g)=f_{1}(g)=f_{2}(g)=m_{2}(g)$. The function $f_{1}=f_{2}$ admits a unique extension to $M_{n}$ and since $m_{1}$ and $m_{2}$ are extensions of $f_{1}$ and $f_{2}$ respectively, then $m_{1}(x)=m_{2}(x)$, for all $x \in M_{n}$. Therefore $D_{1}=D_{2}$.

Thus we have proved that the number of elements in $\mathbf{M}_{\mathbf{1}}\left(M_{n}\right)$ is the same as the number of functions from $G$ to $\mathbf{B}$, and we know that this number is equal to $2^{n}$.

In a similar manner, if $D \in \mathbf{M}_{2}\left(M_{n}\right)$ and $m$ is the natural homomorphism from $M_{n}$ onto the quotient algebra $M_{n} / D=\mathbf{T}$, then the homomorphism $m$ determines in this case a mapping from $G$ to $\mathbf{T}$, precisely the restriction $m_{\mid G}$ from $m$ to the set $G$, this is $f(g)=m_{\mid G}(g)=m(g)$, for all $g \in G$. Putting by definition: $\psi_{2}(D)=m_{\mid G}$, then $\psi_{2}: \mathbf{M}_{2}\left(M_{n}\right) \rightarrow \mathbf{T}^{G}$. Conversely, if $f$ is a mapping from $G$ to $\mathbf{T}$, then there exists one and only one homomorphism $h_{f}$ from $M_{n}$ to $\mathbf{T}$ extending $f$. Since $h_{f}\left(M_{n}\right)=M S\left(h_{f}(G)\right)=L S\left(h_{f}(G) \cup\{c\}\right)$ and the only subalgebra of $\mathbf{T}$ containing the center of $\mathbf{T}$ is $\mathbf{T}$ itself then $h_{f}\left(M_{n}\right)=\mathbf{T}$. In the same way as before, we conclude that $\psi_{2}$ establishes a bijection between $\mathbf{M}_{2}\left(M_{n}\right)$ and the set of all the functions from $G$ to $\mathbf{T}$ and we know that this set has $3^{n}$ elements.

We have finished proving that:

$$
M_{n}=\mathbf{B}^{2^{n}} \times \mathbf{T}^{3^{n}}
$$

therefore the number $N\left(M_{n}\right)$ of elements of $M_{n}$ is:

$$
N\left(M_{n}\right)=2^{2^{n}} \cdot 3^{3^{n}}
$$

A method for determining the Moisil algebra $M(\alpha)$ with a set $G$ of free generators of cardinality $\alpha$ was indicated by A. Monteiro before 1976 (see [63]), but his results were published in 1998, [49]. We shall describe them here, with minor modifications introduced by L. Monteiro in [63].

Let $e$ be the axis of $M(\alpha)$. We denote $B(\alpha)=M(\alpha) / F(\sim \nabla e), P(\alpha)=$ $M(\alpha) / F(\nabla e)$.
L. Monteiro proved, see section 3.3, that:

$$
M(\alpha) \cong B(\alpha) \times P(\alpha),
$$

and also that

- $B(\alpha)$ is a boolean algebra,
- $B(\alpha)$ is isomorphic to $B=\{x \in M(\alpha): x \leq \sim \nabla e\}$,
- $P(\alpha)$ is a centered Łukasiewicz algebra,
- $P(\alpha)$ is isomorphic to $C=\{x \in M(\alpha): x \leq \nabla e\}$,
- $h(x)=(x \wedge \sim \nabla e, x \wedge \nabla e)$ is an isomorphism from $M(\alpha)$ to $B(\alpha) \times P(\alpha)$.

It is easy to check that the function defined by $h_{1}(x)=x \wedge \sim \nabla e$ is an epimorphism from $M(\alpha)$ to $B(\alpha)$.

We shall prove that $B(\alpha)$ is a boolean algebra with a set of free generators of cardinality $\alpha$.

Let $B^{*}$ be a boolean algebra with a set of free generators $G^{*}$ of cardinality $\alpha$. Since $G$ and $G^{*}$ have the same cardinal, there exists a bijection $f: G \rightarrow G^{*}$, so since $M(\alpha)$ is a free algebra, $f$ can be extended to a unique homomorphism $H: M(\alpha) \rightarrow B^{*}$. Since $G$ is a set of generators of $M(\alpha)$ then by Lemma 2.2.9, $M S(H(G))=H(M(\alpha))$ and since $M S(H(G))=M S(f(G))=M S\left(G^{*}\right)=B^{*}$ it follows that $H$ is an epimorphism.
(i) The restriction of $h_{1}$ to the set $G$ is injective.

Indeed, let $g, g^{\prime} \in G$ be such that $h_{1}(g)=h_{1}\left(g^{\prime}\right)$ this is $g \wedge \sim \nabla e=g^{\prime} \wedge \sim \nabla e$, so

$$
H(g \wedge \sim \nabla e)=H\left(g^{\prime} \wedge \sim \nabla e\right)
$$

this is

$$
H(g) \wedge \sim \nabla H(e)=H\left(g^{\prime}\right) \wedge \sim \nabla H(e)
$$

Since $H$ is a homomorphism, it takes the axis $e$ of $M(\alpha)$ to the axis of $B^{*}$ which we know is the element 0 , so we have that

$$
H(g) \wedge \sim \nabla 0=H\left(g^{\prime}\right) \wedge \sim \nabla 0
$$

this is

$$
H(g)=H\left(g^{\prime}\right)
$$

and since $H$ is an extension of $f$ we have

$$
f(g)=f\left(g^{\prime}\right)
$$

from where it follows, since $f$ injective, that que $g=g^{\prime}$. Thus from (i) it follows that the subset $h_{1}(G)=G_{B}$ of $B(\alpha)$ has the same cardinal as $G$. Furthermore, since $h_{1}$ is surjective, by Lemma 2.2.9, $M S\left(h_{1}(G)\right)=h_{1}(M(\alpha))=B(\alpha)$.

We prove now that $G_{B}$ is a set of free generators of $B$. For this, let $A$ be a boolean algebra, $f^{\prime}: G_{B} \rightarrow A$ and $f_{1}=f^{\prime} \circ h_{1 \mid G}$, so $f_{1}$ is a function from $G$ to $A$ and since $M(\alpha)$ is a free algebra, $f_{1}$ can be extended to a homomorphism $H_{1}: M(\alpha) \rightarrow A$. Notice that:
(ii) $\operatorname{Ker}\left(h_{1}\right) \subseteq \operatorname{Ker}\left(H_{1}\right)$.

Indeed, if $h_{1}(x)=1$ this is $1=x \wedge \sim \nabla e$ then
$1=H_{1}(x \wedge \sim \nabla e)=H_{1}(x) \wedge \sim \nabla H_{1}(e)=H_{1}(x) \wedge \sim \nabla 0=H_{1}(x) \wedge 1=H_{1}(x)$.
From (ii) it follows by results of the theory of homomorphisms, see Lemma 2.2.6, that there exists a unique homomorphism $H_{2}: B(\alpha) \rightarrow A$ such that $H_{2}$ 。 $h_{1}=H_{1}$.
(iii) $H_{2}\left(g^{\prime}\right)=f^{\prime}\left(g^{\prime}\right)$ for all $g^{\prime} \in G_{B}$.

Indeed, given $g^{\prime} \in G_{B}=h_{1}(G)$, there exists $g \in G$ such that $h_{1}(g)=g^{\prime}$ so $H_{2}\left(g^{\prime}\right)=H_{2}\left(h_{1}(g)\right)=\left(H_{2} \circ h_{1}\right)(g)=H_{1}(g)=f_{1}(g)=\left(f^{\prime} \circ h_{1}\right)(g)=f^{\prime}\left(h_{1}(g)\right)=$ $f^{\prime}\left(g^{\prime}\right)$.

Thus we have proved that $B(\alpha)$ is a boolean algebra with a set $G_{B}$ of free generators of cardinality equal to $\alpha$, the cardinality of $G$.

In a similar manner one can prove:

- The mapping defined by $h_{2}(x)=x \wedge \nabla e$ is an epimorphism from $M(\alpha)$ to $P(\alpha)$,
- $h_{2}(G)=G_{C}$ is a set of cardinality $\alpha$,
- $G_{C}$ is a set of free generators of the centered algebra $P(\alpha)$, this is, of the three valued Post algebra $C$.

From the result above it follows that $M(n)$ is isomorphic to the cartesian product of the boolean algebra with $n$ free generators by the Post algebra with $n$ free generators so $M(n)=\mathbf{B}^{2^{n}} \times \mathbf{T}^{3^{n}}$ and in consequence

$$
N\left(M_{n}\right)=2^{2^{n}} \cdot 3^{3^{n}}
$$

as we pointed out before.

## CHAPTER 5

## Homomorphic images and further constructions

In this Chapter we shall indicate a construction of all the epimorphisms between finite Łukasiewicz algebras and determine their number (L. Monteiro (2003) [67]).

### 5.1. Homomorphic images of a finite boolean algebra

If $B$ and $B^{\prime}$ are boolean algebras, we denote with $\operatorname{Hom}\left(B, B^{\prime}\right)\left(\operatorname{Epi}\left(B, B^{\prime}\right)\right)$ the set of all the homomorphisms (epimorphisms) from $B$ to $B^{\prime}$. We denote with $B_{n}$ a boolean algebra with $n$ atoms, where $n \in \mathbb{N}$. If $b \in B_{m}$ and $b^{\prime} \in B_{n}$, let $E p i^{\left(b, b^{\prime}\right)}\left(B_{m}, B_{n}\right)=\left\{h \in \operatorname{Epi}\left(B_{m}, B_{n}\right): h(b)=b^{\prime}\right\}$.

With $\mathcal{A}\left(B_{n}\right)$ we denote the set of the atoms of $B_{n}$, and if $b \in B_{n} \backslash\{0\}$ we denote $\mathcal{A}(b)=\left\{a \in \mathcal{A}\left(B_{n}\right): a \leq b\right\}$.

Given $B_{m}$ and $B_{n}$, if $m<n$ then $\operatorname{Epi}\left(B_{m}, B_{n}\right)=\emptyset$.
It is well known that if $f: \mathcal{A}\left(B_{n}\right) \rightarrow \mathcal{A}\left(B_{m}\right)$ then the function $h_{f}: B_{m} \rightarrow B_{n}$ defined by

$$
h_{f}(x)=\bigvee\left\{a \in \mathcal{A}\left(B_{n}\right): f(a) \leq x\right\}^{1},
$$

verifies:
A1) $h_{f} \in \operatorname{Hom}\left(B_{m}, B_{n}\right)$,
A2) If $a \in \mathcal{A}\left(B_{m}\right)$ then $h_{f}(a)=0$ if and only if $a \notin f\left(\mathcal{A}\left(B_{n}\right)\right)$,
A3) $h_{f}$ is surjective if and only if $f$ is injective, [77, 78],
A4) $h_{f}$ is injective if and only if $f$ is surjective [77, 78].
If $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$ then given $b \in \mathcal{A}\left(B_{n}\right)$ we know that $[b)$ is an ultrafilter of $B_{n}$ and that $h^{-1}([b))$ is an ultrafilter of $B_{m}$ so $h^{-1}([b))=[a)$ with $a \in \mathcal{A}\left(B_{m}\right)$. Furthermore, $\operatorname{Ker}(h) \subseteq[a)$. Let $f: \mathcal{A}\left(B_{n}\right) \rightarrow \mathcal{A}\left(B_{m}\right)$ defined by $f(b)=a$, then $f$ is injective and $h_{f}=h$.

There exists a bijective correspondence between the set $\operatorname{In}\left(\mathcal{A}\left(B_{n}\right), \mathcal{A}\left(B_{m}\right)\right)$ of all the injective functions from $\mathcal{A}\left(B_{n}\right)$ to $\mathcal{A}\left(B_{m}\right)$ and the set $\operatorname{Epi}\left(B_{m}, B_{n}\right)$. For this it is enough to consider the function $\Phi(f)=h_{f}$.

If $X$ is a finite set we denote with $N[X]$ its cardinality.
Let us put by definition

$$
V_{m, n}= \begin{cases}\frac{m!}{(m-n)!}, & \text { if } m \geq n \\ 0, & \text { if } m<n\end{cases}
$$

Thus:

$$
N\left[E p i\left(B_{m}, B_{n}\right)\right]=V_{m, n} .
$$

[^3]Lemma 5.1.1. Let $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$, where $m \geq n \geq 1$. Then
A5) If $a \in \mathcal{A}\left(B_{m}\right)$, then $h(a)=0$ or $h(a) \in \mathcal{A}\left(B_{n}\right)$,
A6) If $b \in \mathcal{A}\left(B_{n}\right)$, then there exists a unique $a \in \mathcal{A}\left(B_{m}\right)$, such that $h(a)=b$,
A7) If $h$ is injective then $h(a) \in \mathcal{A}\left(B_{n}\right)$, for all $a \in \mathcal{A}\left(B_{m}\right)$.
Item A6) of the preceding lemma was proved by M. Abad and L. Monteiro in [3], and items A5) and A7) by the same authors in [4]. A different proof was presented by L. Monteiro and A. Kremer in [69].

Next we give another proof of $N\left[\operatorname{Epi}\left(B_{m}, B_{n}\right)\right]=V_{m, n}$. Let $m \geq n \geq 1$. If $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$, we know that the quotient algebra $B_{m} / \operatorname{Ker}(h)$ is isomorphic to $B_{n}$, and since $B_{m}$ is finite $\operatorname{Ker}(h)=[x)$, with $x \in B_{m}$. Furthermore, $B_{m} /[x) \cong(x]$ so $N[(x]]=N\left[B_{n}\right]=2^{n}$. A. Monteiro proved in $[66]$ that if $B$ is a boolean algebra and $F$ a filter of $B$ then each equivalence class modulo $F$ is coordinable with $F$. Therefore, if we let $N[F]=t, N[(x]] \cdot t=N\left[B_{m}\right]$ this is $2^{n} \cdot t=2^{m}$ and therefore $t=2^{m-n}$.

If $B_{n}$ is a homomorphic image of $B_{m}$ then there exists $x \in B_{m}$ such that $(x] \cong B_{n}$ and in consequence $x$ is the supremum of $n$ atoms of $B_{m}$. There are $\binom{m}{n}$ elements of $B_{m}$ that are supremum of $n$ atoms of $B_{m}$. Let $\mathcal{F}_{n}$ be the set of all the increasing sets $[x)$ where $x$ is supremum of $n$ atoms of $B_{m}$.

We denote with $\operatorname{Aut}\left(B_{n}\right)$ the set all the automorphisms of the boolean algebra $B_{n}$. If $\alpha \in \operatorname{Aut}\left(B_{n}\right)$ then $\alpha$ is in particular a bijection on $\mathcal{A}\left(B_{n}\right)$ and by item A7) of Lemma 5.1.1, $\alpha$ transforms atoms in atoms of $B_{n}$ so clearly there exist $n$ ! bijections on $\mathcal{A}\left(B_{n}\right)$, so $N\left[\operatorname{Aut}\left(B_{n}\right)\right]=n!$.

If $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$ then $\operatorname{Ker}(h) \in \mathcal{F}_{n}$. Let $\beta: \operatorname{Epi}\left(B_{m}, B_{n}\right) \rightarrow \mathcal{F}_{n}$ be defined by $\beta(h)=\operatorname{Ker}(h)$. It is clear that if $\alpha \in \operatorname{Aut}\left(B_{n}\right)$ then $\alpha \circ h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$. By Lemma 2.2.3, all the epimorphisms with the same kernel can be obtained this way. Given $[x) \in \mathcal{F}_{n}$, we consider $\beta^{-1}([x))$, so $N\left[\beta^{-1}([x))\right]=n$ ! and therefore $n!\cdot\binom{m}{n}=V_{m, n}=N\left[\operatorname{Epi}\left(B_{m}, B_{n}\right)\right]$.

If $b \in B_{m} \backslash\{0\}$ and $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$ then $h(b)=0$ or $h(b) \neq 0$. If $b^{\prime}=h(b)=0$ then the number of elements of $E p i^{(b, 0)}\left(B_{m}, B_{n}\right)$ is equal to the number of injective functions from $\mathcal{A}\left(B_{n}\right)$ to $\mathcal{A}\left(B_{m}\right) \backslash \mathcal{A}(b)$ this is:

$$
N\left[E p i^{(b, 0)}\left(B_{m}, B_{n}\right)\right]=V_{m-N[\mathcal{A}(b)], n},
$$

so the number of epimorphisms that send $b$ to a non-zero element of $B_{n}$ is ([62], p.86):

$$
V_{m, n}-V_{m-N[\mathcal{A}(b)], n} .
$$

Given $b \in B_{m} \backslash\{0\}$ and $b^{\prime} \in B_{n} \backslash\left\{0^{\prime}\right\}$ then $h_{f}(b)=b^{\prime}$ if and only if $f\left(\mathcal{A}\left(b^{\prime}\right)\right) \subseteq$ $\mathcal{A}(b)$ and $f\left(\mathcal{A}\left(-b^{\prime}\right)\right) \subseteq \mathcal{A}(-b)$, so

$$
N\left[E p i^{\left(b, b^{\prime}\right)}\left(B_{m}, B_{n}\right)\right]=V_{N[\mathcal{A}(b)], N\left[\mathcal{A}\left(b^{\prime}\right)\right]} \cdot V_{\left.m-N[\mathcal{A}(b)], n-N\left[\mathcal{A}\left(b^{\prime}\right)\right]\right]} .
$$

If $b \neq 0$ then $h(b)=0$ if and only if $f\left(\mathcal{A}\left(B_{n}\right)\right) \subseteq \mathcal{A}\left(B_{m}\right) \backslash \mathcal{A}(b)$.
Lemma 5.1.2. If $m \geq n$, and $h \in E p i^{\left(b, b^{\prime}\right)}\left(B_{m}, B_{n}\right)$, where $b \in B_{m} \backslash\{0\}$, $b^{\prime} \in B_{n} \backslash\left\{0^{\prime}\right\}$, then:

A8) If $a \in \mathcal{A}(b)$ and $h(a) \neq 0^{\prime}$ then $h(a) \in \mathcal{A}\left(b^{\prime}\right)$.
A9) If $a \in \mathcal{A}\left(B_{m}\right) \backslash \mathcal{A}(b)$ and $h(a) \neq 0^{\prime}$ then $h(a) \notin \mathcal{A}\left(b^{\prime}\right)$.

Proof. If $a \in \mathcal{A}(b)$, this is $a \leq b$ then $h(a) \leq h(b)=b^{\prime}$ so if $h(a) \neq 0^{\prime}$, $h(a) \in \mathcal{A}\left(B_{n}\right)$ and therefore $h(a) \in \mathcal{A}\left(b^{\prime}\right)$.

If $a \in \mathcal{A}\left(B_{m}\right) \backslash \mathcal{A}(b)$, assume that $h(a) \leq b^{\prime}=h(b)$ so $h(a)=h(a) \wedge h(b)=$ $h(a \wedge b)$, therefore $a \equiv a \wedge b(\bmod \operatorname{Ker}(h))$. Since $B_{m}$ is finite $\operatorname{Ker}(h)=[f)$ with $f \in B_{m}$, and therefore (1) $a \wedge f=a \wedge b \wedge f$. From $0 \leq a \wedge f \leq a$ and $a \in \mathcal{A}\left(B_{m}\right)$ it follows that (2) $a \wedge f=a$ or (3) $a \wedge f=0$. If (2) holds then by (1) we have that $a=a \wedge b \wedge f \leq b$, a contradiction. If (3) holds, since $h(f)=1$ we have that $0=h(0)=h(a \wedge f)=h(a) \wedge h(f)=a \wedge 1=a$, another contradiction. Then $h(a) \not \leq b^{\prime}$.

From A3) and Lemma 5.1.2 it follows that if $h \in \operatorname{Epi}\left(B_{m}, B_{n}\right)$ then $f=\Phi^{-1}(h)$ verifies:

DE1) $f \in \operatorname{In}\left(\mathcal{A}\left(B_{n}\right), \mathcal{A}\left(B_{m}\right)\right)$,
DE2) $f\left(\mathcal{A}\left(b^{\prime}\right)\right) \subseteq \mathcal{A}(b)$,
DE3) $f\left(\mathcal{A}\left(-b^{\prime}\right)\right) \subseteq \mathcal{A}(-b)$.
If $h \in \operatorname{Hom}\left(B_{m}, B_{n}\right)$ then (1) $S=h\left(B_{m}\right)$ is a subalgebra of $B_{n}$ and therefore (2) $h\left(B_{m}\right) \cong B_{t}$ with $1 \leq t \leq n$ and $m \geq t$. Let $\mathcal{A}(S)=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$.

From (1) it follows that $h \in \operatorname{Epi}\left(B_{m}, S\right)$, then $g=\Phi^{-1}(h) \in \operatorname{In}\left(\mathcal{A}(S), \mathcal{A}\left(B_{m}\right)\right)$ and (3) $h_{g}=h$.

Since $\left\{\mathcal{A}\left(s_{1}\right), \mathcal{A}\left(s_{2}\right), \ldots, \mathcal{A}\left(s_{t}\right)\right\}$ is a partition of $\mathcal{A}\left(B_{n}\right)$ then if $b \in \mathcal{A}\left(B_{n}\right)$, there exists $i, 1 \leq i \leq t$ such that $b \in \mathcal{A}\left(s_{i}\right)$, this is $b \leq s_{i}$.

We define $f: \mathcal{A}\left(B_{n}\right) \rightarrow \mathcal{A}\left(B_{m}\right)$ in this manner: $f(b)=g\left(s_{i}\right)$ if and only if $b \in \mathcal{A}\left(s_{i}\right)$. Clearly if one of the sets $\mathcal{A}\left(s_{i}\right)$ has more than one element, $f$ is not injective. Notice that from the definition of $f$ we have that $f\left(\mathcal{A}\left(B_{n}\right)\right)=g(\mathcal{A}(S))$. By A1) $h_{f}=\Phi(f) \in \operatorname{Hom}\left(B_{m}, B_{n}\right)$. Let us see that $h_{f}=h$. By (3), it is enough to prove that $h_{f}=h_{g}$, and for that, we need to show that $h_{f}(a)=h_{g}(a)$ for all $a \in \mathcal{A}\left(B_{m}\right)$.

If $a \in g(\mathcal{A}(S))$, this is $a=g\left(s_{i}\right)$ for some $s_{i} \in \mathcal{A}(S)$, then for all $b \in \mathcal{A}\left(s_{i}\right)$ we have $f(b)=a=g\left(s_{i}\right)$ so (4) $\mathcal{A}\left(s_{i}\right) \subseteq f^{-1}(a)$. We claim that (5) $f^{-1}(a) \subseteq \mathcal{A}\left(s_{i}\right)$. Indeed, if $x \in f^{-1}(a) \backslash \mathcal{A}\left(s_{i}\right)$ then $f(x)=a$ and $x \in \mathcal{A}\left(s_{j}\right)$, for some $s_{j} \neq s_{i}$. Therefore $f(x)=g\left(s_{j}\right) \neq a$, because $g$ is injective, a contradiction. From (4) and (5) it follows that (6) $\mathcal{A}\left(s_{i}\right)=f^{-1}(a)$. Since $g$ is injective, $h_{g}(a)=s_{i}$ (for this see [66], page 172, observation 4.12.2 (3)). Then $h_{f}(a)=\bigvee\left\{x \in \mathcal{A}\left(B_{n}\right): f(x) \leq a\right\}=$ $\bigvee\left\{x \in \mathcal{A}\left(B_{n}\right): f(x) \in \mathcal{A}(a)\right\}=\bigvee\left\{x \in \mathcal{A}\left(B_{n}\right): f(x)=a\right\}=\bigvee f^{-1}(a)=($ by $(6))$ $=\bigvee \mathcal{A}\left(s_{i}\right)=s_{i}$.

If $a \notin g(\mathcal{A}(S))$, by A2) $h_{g}(a)=0$. Furthermore (7) $a \notin f\left(\mathcal{A}\left(B_{n}\right)\right)$, because if $a=f(x)$, with $x \in \mathcal{A}\left(B_{n}\right)$ then $x \in \mathcal{A}\left(s_{i}\right)$ for some $i$, so $a \in g(\mathcal{A}(S))$, a contradiction. From (7) it follows that $h_{f}(a)=\bigvee\left\{x \in \mathcal{A}\left(B_{n}\right): f(x) \leq a\right\}=$ $\bigvee\left\{x \in \mathcal{A}\left(B_{n}\right): f(x)=a\right.$ or $\left.f(x)=0\right\}=\bigvee \emptyset=0$.

From the two cases above, it follows that $h_{f}(a)=h_{g}(a)$ for all $a \in \mathcal{A}\left(B_{m}\right)$.
If $m<n$ we have that $N\left[\operatorname{Epi}\left(B_{m}, B_{n}\right)\right]=0$, and if $h \in \operatorname{Hom}\left(B_{m}, B_{n}\right)$ then $h\left(B_{m}\right)$ is a boolean subalgebra of $B_{n}$ such that $1 \leq N\left[\mathcal{A}\left(h\left(B_{m}\right)\right)\right] \leq m<n$.

It is well known that the boolean subalgebras of $B_{n}$ are in bijective correspondence with the partitions of the set $\mathcal{A}\left(B_{n}\right)$, and that the number of subalgebras
of $B_{n}$ with $t$ atoms $1 \leq t \leq n$ is

$$
P(n, t)=\frac{\sum_{i=0}^{t-1}(-1)^{i}{ }_{i}^{t}\binom{t}{i}(t-i)^{n}}{t!} .
$$

Therefore if $S$ is a subalgebra of $B_{n}$ with $t$ atoms where $1 \leq t \leq m<n$ then there exist $V_{m, t}$ epimorphisms from $B_{m}$ onto $S$, so if $m<n$,

$$
N\left[\operatorname{Hom}\left(B_{m}, B_{n}\right)\right]=\sum_{t=1}^{m} P(n, t) \cdot V_{m, t} .
$$

Notice that if $m \geq n$ then

$$
\begin{gathered}
N\left[\operatorname{Hom}\left(B_{m}, B_{n}\right)\right]=N\left[\operatorname{Epi}\left(B_{m}, B_{n}\right)\right]+\sum_{t=1}^{n-1} P(n, t) \cdot N\left[\operatorname{Epi}\left(B_{m}, B_{t}\right)\right]= \\
V_{m, n}+\sum_{t=1}^{n-1} P(n, t) \cdot V_{m, t}
\end{gathered}
$$

### 5.2. Homomorphic images of a Łukasiewicz algebra

Let $L$ be a finite Łukasiewicz algebra, then

$$
L \cong \mathbf{B}^{j} \times \mathbf{T}^{k}, \text { where } j, k \in \mathbb{Z}, j \geq 0, k \geq 0
$$

T) If $j=k=0$ then $L$ is trivial, this is, it has a single element,
B) If $j \geq 1, k=0$ then $L$ is a boolean algebra with $j$ atoms,
P) If $j=0, k \geq 1$ then $L$ is a centered algebra and $B(L)$ is a boolean algebra with $k$ atoms,
Ax) If $j \geq 1, k \geq 1$ then $L$ is an axled Lukasiewicz algebra, that is a not a boolean algebra nor a centered algebra. The axis is the $(j+k)$-tuple

$$
e=(\underbrace{0,0, \ldots, 0}_{j}, \underbrace{c, \ldots, c}_{k})
$$

Therefore

$$
\nabla e=(\underbrace{0,0, \ldots, 0}_{j}, \underbrace{1, \ldots, 1}_{k}) .
$$

$B(L)$ is a boolean algebra with $j+k$ atoms, and its elements are

$$
\left(b_{1}, b_{2}, \ldots, b_{j}, b_{j+1}, \ldots, b_{j+k}\right),
$$

where $b_{i} \in \mathbf{B}=\{0,1\}$ for $1 \leq i \leq j$ and $b_{i} \in\{0,1\} \subset \mathbf{T}$ for $j+1 \leq i \leq$ $j+k$. Given $b \in B(L)$ let
$J(b)=\left\{i: b_{i}=1,1 \leq i \leq j\right\}$, and $K(b)=\left\{i: b_{i}=1, j+1 \leq i \leq j+k\right\}$,
so $0 \leq N[J(b)] \leq j$ and $0 \leq N[K(b)] \leq k$.
If $j$ and $k$ are not simultaneously zero then $L$ is a non trivial finite Łukasiewicz algebra. We know that the homomorphic images of $L$ are determined by the filters $[b)$ where $b \in B(L)$, and that the quotient algebra $L /[b)$ is isomorphic to the Łukasiewicz algebra ( $b]=\{x \in L: x \leq b\}$. Then since $B(L)$ has $2^{j+k}$ elements:
C) there exist $2^{j+k}$ homomorphic images of $L$.

Furthermore we have:
B) If $j \geq 1, k=0$, then $L$ has $2^{j}$ homomorphic images, which are boolean algebras.
P) If $j=0, k \geq 1$, then $L$ has $2^{k}$ homomorphic images, which are centered algebras.
Ax) If $j \geq 1, k \geq 1$, then $L$ has $2^{j+k}$ homomorphic images, which are axled algebras.
Ax1) If $N[K(b)]=0$, then $(b] \cong B^{N[J(b)]}$ therefore there are $\binom{j}{j_{1}}$, $0 \leq j_{1} \leq j$ homomorphic images of $L$ that are boolean algebras with $j_{1}$ atoms, and we have a total of $2^{j}$ homomorphic images which are boolean algebras. Observe that if $N[J(b)]=0$, then $L /[b)$ is a trivial algebra.
Ax2) If $N[J(b)]=0$, then $(b] \cong \mathbf{T}^{N[K(b)]}$ therefore there are $\binom{k}{k_{1}}$, $0 \leq k_{1} \leq k$ homomorphic images $L^{\prime}$ of $L$ that are centered algebras such that $B\left(L^{\prime}\right)$ is a boolean algebra with $k_{1}$ atoms, and we have a total of $2^{k}$ homomorphic images that are centered algebras. Notice that if $N[K(b)]=0$, then $L /[b)$ is a trivial algebra, which coincides with the trivial algebra from Ax1).
Ax3) If $1 \leq j_{1}=N[J(b)] \leq j$ and $1 \leq k_{1}=N[K(b)] \leq k$, then $L /[b) \cong$ $(b] \cong \mathbf{B}^{N[J(b)]} \times \mathbf{T}^{N[K(b)]}$ is an axled homomorphic which is not a boolean algebra nor a centered algebra.
Therefore the number of these homomorphic images is:

$$
\left(\sum_{i=1}^{j}\binom{j}{i}\right) \cdot\left(\sum_{i=1}^{k}\binom{k}{i}\right)=\left(2^{j}-1\right) \cdot\left(2^{k}-1\right)
$$

Since the trivial algebra shows up in cases Ax1) and Ax2) as a homomorphic image, if $j \geq 1$ and $k \geq 1$, we have a total of:

$$
\begin{gathered}
2^{j}+\left(2^{k}-1\right)+\left(2^{k}-1\right) \cdot\left(2^{j}-1\right)= \\
2^{j}+\left(2^{k}-1\right) \cdot\left(1+\left(2^{j}-1\right)\right)= \\
2^{j}+\left(2^{k}-1\right) \cdot 2^{j}= \\
2^{j} \cdot\left(1+2^{k}-1\right)=2^{j} \cdot 2^{k}=2^{j+k}
\end{gathered}
$$

homomorphic images, as we had determined in C).

### 5.3. Epimorphisms

If $L$ and $L^{\prime}$ are Lukasiewicz algebras, we denote with $\operatorname{Epi}\left(L, L^{\prime}\right)$ the set of all the epimorphisms from $L$ to $L^{\prime}$.

Lemma 5.3.1. If $L$ and $L^{\prime}$ are axled Eukasiewicz algebras, with axis e and $e^{\prime}$ respectively and $H \in E p i\left(L, L^{\prime}\right)$ then $H(e)=e^{\prime}$. Furthermore, if we write $h=H_{\mid B(L)}$, then $h \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$.

Proof. (1) $\Delta H(e)=H(\Delta e)=H(0)=0^{\prime}$.
Let $y \in L^{\prime}$, so since $H$ is surjective, there exists $x \in L$ such that $H(x)=$ $y$, so (2) $\nabla y=\nabla H(x)=H(\nabla x) \leq H(\Delta x \vee \nabla e)=H(\Delta x) \vee H(\nabla e)=$ $\Delta H(x) \vee \nabla H(e)=\Delta y \vee \nabla H(e)$.

From (1) and (2) it follows that $H(e)$ is an axis of $L^{\prime}$ and since the axis is unique $H(e)=e^{\prime}$.

Furthermore, $h(\nabla e)=H(\nabla e)=\nabla H(e)=\nabla e^{\prime}$.
The following lemma generalizes the results by L. Monteiro [57, 62] and also Lemma 4.1 due to L. Monteiro, M. Abad, S. Savini and J. Sewald appearing in [68].

Lemma 5.3.2. If $L$ and $L^{\prime}$ are axled Łukasiewicz algebras with axis e and $e^{\prime}$ respectively and $h \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ then the transformation $H: L \rightarrow L^{\prime}$ defined by $H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)$ verifies
a) $H$ is an extension of $h$,
b) $H \in E p i\left(L, L^{\prime}\right)$, and
c) $H$ is the only extension of $h$.

Proof. a) Indeed if $b \in B(L)$ then $\Delta b=\nabla b=b$, so:
$H(b)=\left(h(\Delta b) \vee e^{\prime}\right) \wedge h(\nabla b)=\left(h(b) \vee e^{\prime}\right) \wedge h(b)=h(b)$.
b1) $H(x \wedge y)=\left(h\left(\Delta(x \wedge y) \vee e^{\prime}\right) \wedge h(\nabla(x \wedge y))=\right.$
$\left(h(\Delta x \wedge \Delta y) \vee e^{\prime}\right) \wedge h(\nabla x \wedge \nabla y)=\left((h(\Delta x) \wedge h(\Delta y)) \vee e^{\prime}\right) \wedge h(\nabla x) \wedge h(\nabla y)=$ $\left(h(\Delta x) \vee e^{\prime}\right) \wedge\left(h(\Delta y) \vee e^{\prime}\right) \wedge h(\nabla x) \wedge h(\nabla y)=$ $\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x) \wedge\left(h(\Delta y) \vee e^{\prime}\right) \wedge h(\nabla y)=H(x) \wedge H(y)$.
b2) Since $H$ extends $h$ and $\nabla x \in B(L)$ then (1) $H(\nabla x)=h(\nabla x)$.
(2) $\nabla H(x)=\nabla\left(\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)\right)=\left(\nabla h(\Delta x) \vee \nabla e^{\prime}\right) \wedge \nabla h(\nabla x)=$ $\left(h(\Delta x) \vee \nabla e^{\prime}\right) \wedge h(\nabla x)$.

Since $\nabla x \leq \Delta x \vee \nabla e, \nabla x, \Delta x, \nabla e, \Delta x \vee \nabla e \in B(L)$ and $h$ is a boolean homomorphism verifying $h(\nabla e)=\nabla e^{\prime}$ we have that (3) $h(\nabla x) \leq h(\Delta x \vee \nabla e)=$ $h(\Delta x) \vee h(\nabla e)=h(\Delta x) \vee \nabla e^{\prime}$. From (2) and (3) it follows that (4) $\nabla H(x)=$ $h(\nabla x)$. From (1) and (4) it follows that $\nabla H(x)=H(\nabla x)$.
b3) By definition $H(\sim x)=\left(h(\Delta \sim x) \vee e^{\prime}\right) \wedge h(\nabla \sim x)$, so (5) $\Delta H(\sim x)=$ $\left(h(\Delta \sim x) \vee \Delta e^{\prime}\right) \wedge h(\nabla \sim x)=\left(h(\Delta \sim x) \vee 0^{\prime}\right) \wedge h(\nabla \sim x)=$ $h(\Delta \sim x) \wedge h(\nabla \sim x)=h(\Delta \sim x)$, and $\nabla H(\sim x)=$ $\left(h(\Delta \sim x) \vee \nabla e^{\prime}\right) \wedge h(\nabla \sim x)=(h(\Delta \sim x) \vee h(\nabla e)) \wedge h(\nabla \sim x)=$ $h((\Delta \sim x \vee \nabla e) \wedge \nabla \sim x)$. Since $\nabla \sim x \leq \Delta \sim x \vee \nabla e$, we have that (6) $\nabla H(\sim x)=h(\nabla \sim x)$.

Since $h$ is a boolean epimorphism, then if $b \in B(L)$ we have that $(7) h(\sim b)=$ $\sim h(b)$, so $\sim H(x)=\left(\sim h(\Delta x) \wedge \sim e^{\prime}\right) \vee \sim h(\nabla x)=$ $\left(h(\sim \Delta x) \wedge \sim e^{\prime}\right) \vee h(\sim \nabla x)$, and therefore:
(8) $\Delta \sim H(x)=\left(\Delta h(\sim \Delta x) \wedge \Delta \sim e^{\prime}\right) \vee \Delta h(\sim \nabla x)=$ $\left(h(\sim \Delta x) \wedge \sim \nabla e^{\prime}\right) \vee h(\sim \nabla x)=(\sim h(\Delta x) \wedge \sim h(\nabla e)) \vee \sim h(\nabla x)=$ $\sim((h(\Delta x) \vee h(\nabla e)) \wedge h(\nabla x))=\sim h((\Delta x \vee \nabla e) \wedge \nabla x)=\sim h(\nabla x)=h(\sim \nabla x)=$ $h(\Delta \sim x)$, and $(9) \nabla \sim H(x)=\left(\nabla h(\sim \Delta x) \wedge \nabla \sim e^{\prime}\right) \vee \nabla h(\sim \nabla x)=$ $\left(h(\sim \Delta x) \wedge \sim \Delta e^{\prime}\right) \vee h(\sim \nabla x)=(h(\sim \Delta x) \wedge \sim 0) \vee h(\sim \nabla x)=$ $h(\sim \Delta x) \vee h(\sim \nabla x)=h(\sim \Delta x)=h(\nabla \sim x)$.

From (5) and (8) it follows that (10) $\Delta H(\sim x)=\Delta \sim H(x)$ and from (6) and (9) it follows that (11) $\nabla H(\sim x)=\nabla \sim H(x)$. From (10) and (11) it follows by Moisil's determination principle that $H(\sim x)=\sim H(x)$.
b4) Given $y \in L^{\prime}, y=\left(\Delta y \vee e^{\prime}\right) \wedge \nabla y$, since $\nabla y, \Delta y \in B\left(L^{\prime}\right)$ and $h$ is a boolean epimorphism, there exist $b_{1}, b_{2} \in B(L)$ such that $h\left(b_{1}\right)=\Delta y$ and $h\left(b_{2}\right)=\nabla y$.

Let $b_{3}=b_{1} \wedge b_{2} \in B(L), b_{4}=b_{1} \vee b_{2} \in B(L)$ and $x=\left(b_{3} \vee e\right) \wedge b_{4} \in L$. Then $\Delta x=\left(\Delta b_{3} \vee \Delta e\right) \wedge \Delta b_{4}=\left(b_{3} \vee 0\right) \wedge b_{4}=b_{3} \wedge b_{4}=b_{3}=b_{1} \wedge b_{2}$, and $\nabla x=\left(\nabla b_{3} \vee \nabla e\right) \wedge \nabla b_{4}$. So $h(\Delta x)=h\left(b_{1} \wedge b_{2}\right)=h\left(b_{1}\right) \wedge h\left(b_{2}\right)=$
$\Delta y \wedge \nabla y=\Delta y$, and $h(\nabla x)=h\left(\left(\nabla b_{3} \vee \nabla e\right) \wedge \nabla b_{4}\right)=\left(h\left(\nabla b_{3}\right) \vee h(\nabla e)\right) \wedge h\left(\nabla b_{4}\right)=$ $\left.\left.\left(\Delta y \vee \nabla e^{\prime}\right)\right) \wedge \nabla y\right)$ and since $\nabla y \leq \Delta y \vee \nabla e^{\prime}$ we have that $h(\nabla x)=\nabla y$, so $H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)=\left(\Delta y \vee e^{\prime}\right) \wedge \nabla y=y$, which proves that $H$ is surjective.
c) If $H^{\prime} \in E p i\left(L, L^{\prime}\right)$ verifies $H^{\prime}(b)=h(b)$ for all $b \in B(L)$ then

$$
\begin{gathered}
H^{\prime}(x)=\left(\Delta H^{\prime}(x) \vee e^{\prime}\right) \wedge \nabla H^{\prime}(x)=\left(H^{\prime}(\Delta x) \vee e^{\prime}\right) \wedge H^{\prime}(\nabla x)= \\
\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)=H(x)
\end{gathered}
$$

Corollary 5.3.3. If $L$ and $L^{\prime}$ are centered Eukasiewicz algebras with centers $c$ and $c^{\prime}$ respectively and $h \in E p i\left(B(L), B\left(L^{\prime}\right)\right)$ then the function $H: L \rightarrow L^{\prime}$ defined by $H(x)=\left(h(\Delta x) \vee c^{\prime}\right) \wedge h(\nabla x)$ is the unique epimorphism from $L$ to $L^{\prime}$ extending $h$.

Proof. It is enough to notice that every center is an axis of the algebra and that $h(\nabla c)=h(1)=1^{\prime}=\nabla c^{\prime}$.

Lemma 5.3.4. If $L$ and $L^{\prime}$ are axled Eukasiewicz algebras with axis e and $e^{\prime}$ respectively, then there is a bijective correspondence between the sets Epi $\left(L, L^{\prime}\right)$ and $E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$.

Proof. If $h \in E p i\left(\nabla e, \nabla e^{\prime}\right)\left(B(L), B\left(L^{\prime}\right)\right)$, then by Lemma 5.3.2, the function:

$$
H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)
$$

verifies $H \in \operatorname{Epi}\left(L, L^{\prime}\right)$. If we put $\delta(h)=H$, then by Lemma 5.3.2, c) $\delta$ is a function.

If $H \in E p i\left(L, L^{\prime}\right)$, by Lemma 5.3.1 we have that $h=H_{\mid B(L)} \in$ $E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ and by Lemma 5.3.2 the extension of $h$ to $L$ is the epimorphism $H$, so $\delta(h)=H$, which proves that $\delta$ is surjective.

If $h, h^{\prime} \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ are such that $h \neq h^{\prime}$ then there exists $b \in B(L)$ such that $h(b) \neq h^{\prime}(b)$. If $H$ and $H^{\prime}$ are homomorphisms extending $h$ and $h^{\prime}$ respectively then $H(b)=h(b) \neq h^{\prime}(b)=H^{\prime}(b)$, so $\delta$ is injective.

Let $L$ and $L^{\prime}$ be non trivial finite Eukasiewicz algebras, so $L \cong \mathbf{B}^{j} \times \mathbf{T}^{k}$ and $L^{\prime} \cong \mathbf{B}^{j^{\prime}} \times \mathbf{T}^{k^{\prime}}$, where $j, k, j^{\prime}, k^{\prime} \geq 1$. We proved that $H \in E p i\left(L, L^{\prime}\right)$ if and only if $h=H_{\mid B(L)} \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ so $f=\Phi^{-1}(h) \in \operatorname{In}\left(\mathcal{A}\left(B\left(L^{\prime}\right)\right), \mathcal{A}(B(L))\right)$ must satisfy the conditions DE2) and DE3), this is
(1) $\quad f\left(\mathcal{A}\left(\nabla e^{\prime}\right)\right) \subseteq \mathcal{A}(\nabla e)$ and $f\left(\mathcal{A}\left(\sim \nabla e^{\prime}\right)\right) \subseteq \mathcal{A}(\sim \nabla e)$.

Then since $N[\mathcal{A}(\nabla e)]=k, N\left[\mathcal{A}\left(\nabla e^{\prime}\right)\right]=k^{\prime}, N[\mathcal{A}(B(L)) \backslash \mathcal{A}(\nabla e)]=j$ and $N\left[\mathcal{A}\left(B\left(L^{\prime}\right)\right) \backslash \mathcal{A}\left(\nabla e^{\prime}\right)\right]=j^{\prime}$ for the set of injective functions from $\mathcal{A}\left(B\left(L^{\prime}\right)\right)$ to $\mathcal{A}(B(L))$ verifying (1) not to be empty it is necessary and sufficient that $k \geq k^{\prime}$ and $j \geq j^{\prime}$. Then by the results above:

$$
\begin{equation*}
N\left[E p i\left(L, L^{\prime}\right)\right]=N\left[E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)\right]=V_{k, k^{\prime}} \cdot V_{j, j^{\prime}} \tag{2}
\end{equation*}
$$

Notice that:

- If $L$ and $L^{\prime}$ are algebras with center $c$ and $c^{\prime}$ respectively, this is $L \cong \mathbf{T}^{k}$ and $L^{\prime} \cong \mathbf{T}^{k^{\prime}}$ then

$$
\begin{gathered}
N\left[E p i\left(L, L^{\prime}\right)\right]=N\left[E p i^{\left(1,1^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)\right]=N\left[E p i\left(B(L), B\left(L^{\prime}\right)\right)\right]= \\
V_{N[\mathcal{A}(B(L))], N\left[\mathcal{A}\left(B\left(L^{\prime}\right)^{\prime}\right)\right]}=V_{k, k^{\prime}} .
\end{gathered}
$$

- If $L$ and $L^{\prime}$ are boolean algebras, this is $L \cong \mathbf{B}^{j}$ and $L^{\prime} \cong \mathbf{B}^{j^{\prime}}$ then

$$
\begin{gathered}
N\left[E p i\left(L, L^{\prime}\right)\right]=N\left[E p i^{\left(0,0^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)\right]=N\left[E p i\left(B(L), B\left(L^{\prime}\right)\right)\right]= \\
V_{N[\mathcal{A}(B(L))], N\left[\mathcal{A}\left(B\left(L^{\prime}\right)\right)\right]}=V_{j, j^{\prime}} .
\end{gathered}
$$

If $L$ is a non trivial finite Łukasiewicz algebra, let $P(L)$ be the set of its prime elements and $\varphi: P(L) \rightarrow P(L)$ the Birula-Rasiowa transformation from section 2.5. If $L^{\prime}$ is a non trivial finite Łukasiewicz algebra, a function $f: P\left(L^{\prime}\right) \rightarrow P(L)$ is said to be an $H$-function, [2] if it is biunivocal and verifies $f\left(\nabla p^{\prime}\right)=\nabla f\left(p^{\prime}\right)$, $f\left(\varphi\left(p^{\prime}\right)\right)=\varphi\left(f\left(p^{\prime}\right)\right)$. M. Abad and A. Figallo [2] proved that there exists a bijection between the $H$-functions and the set $\operatorname{Epi}\left(L, L^{\prime}\right)$, where $L$ and $L^{\prime}$ are axled Lukasiewicz algebras that are not boolean algebras nor centered algebras. The number of elements of $\operatorname{Epi}\left(L, L^{\prime}\right)$ determined by these authors coincides with the one indicated in (2).

Clearly it is harder to construct $H$-functions than injectives functions from $\mathcal{A}\left(B_{n}\right)$ to $\mathcal{A}\left(B_{m}\right)$ verifying the conditions indicated in (1).

Remark 5.3.5. If $L \cong \mathbf{B}^{j} \times \mathbf{T}^{k}$, let $b \in B(L)$ be such that $1 \leq N[J(b)]=$ $j_{1} \leq j$ and $1 \leq N[K(b)]=k_{1} \leq k$. Assume for example that

$$
b=(\underbrace{\underbrace{1,1, \ldots, 1}_{j_{1}}, 0,0, \ldots 0}_{j}, \underbrace{\underbrace{1,1, \ldots, 1}_{k_{1}}, 0,0, \ldots, 0}_{k}) .
$$

Then the set (b] has $2^{j_{1}} \cdot 3^{k_{1}}$ elements. We know that (b] is a Eukasiewicz algebra and that $L /[b) \cong(b]$. Furthermore (b] has as axis the element

$$
e^{\prime}=(\underbrace{0,0, \ldots 0}_{j} \underbrace{\underbrace{c, c, \ldots, c,}_{k_{1}}, 0,0, \ldots, 0}_{k}),
$$

so

$$
\nabla e^{\prime}=(\underbrace{0,0, \ldots 0}_{j} \underbrace{\underbrace{1,1, \ldots, 1}_{k_{1}}, 0,0, \ldots, 0}_{k}) .
$$

If $x \in(b]$ then

$$
x=(\underbrace{x_{1}, x_{2}, \ldots, x_{j_{1}}, 0,0, \ldots 0}_{j}, \underbrace{y_{1}, y_{2}, \ldots, y_{k_{1}}, 0,0, \ldots, 0}_{k})
$$

and since the negation in (b] (see section 2.6) is given by $\approx x=\sim x \wedge b$ we have that

$$
\approx x=(\underbrace{\sim x_{1}, \sim x_{2}, \ldots, \sim x_{j_{1}}, 0,0, \ldots 0}_{j} \underbrace{\sim y_{1}, \sim y_{2}, \ldots, \sim y_{k_{1}}, 0,0, \ldots, 0}_{k})
$$

$$
\approx \nabla e^{\prime}=(\underbrace{1, \underbrace{1,1, \ldots, 1}_{j_{1}}}_{j}, 0,0, \ldots 0, \underbrace{0,0, \ldots, 0}_{k})
$$

By the results in section 3.3,

$$
L /[b) \cong(b] \cong(b] /\left[\approx \nabla e^{\prime}\right) \times(b] /\left[\nabla e^{\prime}\right)
$$

where $(b] /\left[\approx \nabla e^{\prime}\right)$ is a boolean algebra and $(b] /\left[\nabla e^{\prime}\right)$ is a centered Eukasiewicz algebra. Since $(b] /\left[\approx \nabla e^{\prime}\right) \cong\left(\approx \nabla e^{\prime}\right]$, and $(b] /\left[\nabla e^{\prime}\right) \cong\left(\nabla e^{\prime}\right]$ we have that $N\left[\left(\approx \nabla e^{\prime}\right]\right]=2^{j_{1}}$ and $N\left[\left(\nabla e^{\prime}\right]\right]=3^{k_{1}}$, so

$$
L /[b) \cong \mathbf{B}^{j_{1}} \times \mathbf{T}^{k_{1}}
$$

Lemma 5.3.6. (L. Monteiro [62]) If $L$ and $L^{\prime}$ are Eukasiewicz algebras, $H$ : $L \rightarrow L^{\prime}$ a homomorphism and $h=H_{\mid B(L)}$ then:
a) $H(B(L)) \subseteq B\left(L^{\prime}\right)$ and $h: B(L) \rightarrow B\left(L^{\prime}\right)$ is a boolean homomorphism,
b) $H$ is completely determined by $h$,
c) if $B\left(L^{\prime}\right) \subseteq H(L)$ then $h$ is an epimorphism from $B(L)$ to $B\left(L^{\prime}\right)$,
d) if $H(L) \subseteq B\left(L^{\prime}\right)$ then $h=H_{\mid B(L)}$ verifies $h(\Delta x)=h(\nabla x)$ for all $x \in L$. Conversely, if $g: B(L) \rightarrow B\left(L^{\prime}\right)$ is a boolean homomorphism that verifies $g(\Delta x)=g(\nabla x)$ for all $x \in L$, then $g$ can be extended to $a$ unique homomorphism $H: L \rightarrow L^{\prime}$ such that $H(L) \subseteq B\left(L^{\prime}\right)$,
e) if $L$ has axis $e$, then $H(L) \subseteq B\left(L^{\prime}\right)$ if and only if $H(e)=0$. If $g: B(L) \rightarrow B\left(L^{\prime}\right)$ is a boolean homomorphism that verifies $g(\nabla e)=0$, $g$ can be extended to a unique homomorphism $H: L \rightarrow L^{\prime}$ such that $H(L) \subseteq B\left(L^{\prime}\right)$,
f) if $L^{\prime}$ is an algebra with center $c^{\prime}$, every boolean homomorphism $g: B(L) \rightarrow B\left(L^{\prime}\right)$ can be extended to a unique homomorphism $H: L \rightarrow L^{\prime}$.

Proof. a) Is an immediate consequence of the properties of the homomorphisms.
b) If $H$ and $H^{\prime}$ are homomorphisms from $L$ to $L^{\prime}$ such that $h=H_{\mid B(L)}=$ $H_{\mid B(L)}^{\prime}=h^{\prime}$ then (1) $\Delta H(x)=H(\Delta x)=h(\Delta x)=h^{\prime}(\Delta x)=H^{\prime}(\Delta x)=$ $\Delta H^{\prime}(x)$, and analogously (2) $\nabla H(x)=\nabla H^{\prime}(x)$. From (1) and (2) by Moisil's determination principle, it follows that $H=H^{\prime}$.
c) Given $b^{\prime} \in B\left(L^{\prime}\right)$, since $B\left(L^{\prime}\right) \subseteq H(L)$ then $b^{\prime}=H(x)$ with $x \in L$, so $\Delta x \in B(L)$ and $h(\Delta x)=H(\Delta x)=\Delta H(x)=\Delta b^{\prime}=b^{\prime}$.
d) If $H(L) \subseteq B\left(L^{\prime}\right)$ then $\Delta H(x)=H(x)=\nabla H(x)$ for all $x \in L$, so $h(\Delta x)=H(\Delta x)=\Delta H(x)=H(x)=\nabla H(x)=H(\nabla x)=h(\nabla x)$.

If $g: B(L) \rightarrow B\left(L^{\prime}\right)$ is a boolean homomorphism such that $g(\Delta x)=$ $g(\nabla x)$ for all $x \in L$, then put by definition $H(x)=g(\Delta x)$, for all $x \in L$. From this definition $H(x) \in B\left(L^{\prime}\right)$, for all $x \in L$, so $H(L) \subseteq B\left(L^{\prime}\right)$. Furthermore, if $b \in B(L)$ then $H(b)=g(\Delta b)=g(b)$. Finally let us prove that $H$ is a homomorphism.

$$
\begin{aligned}
& H(x \vee y)=g(\Delta(x \vee y))=g(\Delta x \vee \Delta y)=g(\Delta x) \vee g(\Delta y)= \\
& H(x) \vee H(y) . \\
& H(\nabla x)=g(\Delta \nabla x)=g(\nabla x)=H(x)=\nabla H(x) .
\end{aligned}
$$

$H(\sim x)=g(\Delta \sim x)=g(\sim \nabla x)=\sim g(\nabla x)=\sim H(x)$.
If $H^{\prime}: L \rightarrow L^{\prime}$ is a homomorphism extending $g$ such that (3) $H^{\prime}(L) \subseteq$ $B\left(L^{\prime}\right)$ then $H^{\prime}(\Delta x)=g(\Delta x)=H(x)$ so $\Delta H^{\prime}(x)=H(x)$ and since by (3) $H^{\prime}(x) \in B\left(L^{\prime}\right)$, we have that $H^{\prime}(x)=H(x)$.
e) We know that $x=(\Delta x \vee e) \wedge \nabla x$, for all $x \in L$, so if $H(e)=0$ then $H(x)=(H(\Delta x) \vee H(e)) \wedge H(\nabla x)=H(\Delta x) \wedge H(\nabla x)=H(\Delta x)=$ $\Delta H(x) \in B\left(L^{\prime}\right)$ and therefore $H(L) \subseteq B\left(L^{\prime}\right)$. Conversely, since $H(e) \in$ $H(L) \subseteq B\left(L^{\prime}\right)$ we have that $\Delta H(e)=H(e)$ so $H(e)=\Delta H(e)=$ $H(\Delta e)=H(0)=0$. Notice that in this case $h(\nabla e)=H(\nabla e)=\nabla H(e)=$ 0.

If $g: B(L) \rightarrow B\left(L^{\prime}\right)$ is a boolean homomorphism such that $g(\nabla e)=0$, since $\nabla x \leq \Delta x \vee \nabla e$ for all $x \in L$, then $g(\nabla x) \leq g(\Delta x) \vee g(\nabla e)=g(\Delta x)$, so as $g(\Delta x) \leq g(\nabla x)$, we have that $g(\Delta x)=g(\nabla x)$ for all $x \in L$. Then by (4) $g$ extends to a unique homomorphism $H: L \rightarrow L^{\prime}$ such that $H(L) \subseteq B\left(L^{\prime}\right)$.
f) The homomorphism $H$ is defined by $H(x)=\left(g(\Delta x) \vee c^{\prime}\right) \wedge g(\nabla x)$. (L. Monteiro [57]). The uniqueness was also proved by L. Monteiro, [52]. If $F$ is a homomorphism from $L$ to $L^{\prime}$ extending $g$ then $F(x)=$ $\left(\Delta F(x) \vee c^{\prime}\right) \wedge \nabla F(x)=\left(F(\Delta x) \vee c^{\prime}\right) \wedge F(\nabla x)=\left(g(\Delta x) \vee c^{\prime}\right) \wedge g(\nabla x)=$ $H(x)$.

Lemma 4.1 in [68] is a particular instance of the lemma above.
Lemma 5.3.7. If $L$ and $L^{\prime}$ are Eukasiewicz algebras with axis $e$ and $e^{\prime}$ respectively, $h \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ and $H \in E p i\left(L, L^{\prime}\right)$ is the epimorphism extending $h$ then:
a) $x \in \operatorname{Ker}(H)=\{x \in L: H(x)=1\} \Longleftrightarrow \Delta x, \nabla x \in \operatorname{Ker}(h)=$ $\{b \in B(L): h(x)=1\}$,
b) If $h_{1}, h_{2} \in E p i\left(\nabla e, \nabla e^{\prime}\right)\left(B(L), B\left(L^{\prime}\right)\right)$ and $H_{1}, H_{2} \in E p i\left(L, L^{\prime}\right)$ are the epimorphisms extending $h_{1}$ and $h_{2}$ respectively then:

$$
\operatorname{Ker}\left(h_{1}\right)=\operatorname{Ker}\left(h_{2}\right) \Longleftrightarrow \operatorname{Ker}\left(H_{1}\right)=\operatorname{Ker}\left(H_{2}\right)
$$

Proof.
a) $x \in \operatorname{Ker}(H) \Longleftrightarrow H(x)=1$, so $h(\Delta x)=H(\Delta x)=\Delta H(x)=1$ and $h(\nabla x)=H(\nabla x)=\nabla H(x)=1$ this is $\Delta x, \nabla x \in \operatorname{Ker}(h)$.

Conversely, if $\Delta x, \nabla x \in \operatorname{Ker}(h)$, this is $h(\Delta x)=h(\nabla x)=1$ then $H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)=\left(1 \vee e^{\prime}\right) \wedge 1=1$.
b) If $x \in \operatorname{Ker}\left(H_{1}\right)$ then by a) we have that $\Delta x, \nabla x \in \operatorname{Ker}\left(h_{1}\right)=\operatorname{Ker}\left(h_{2}\right)$ so by a), $x \in \operatorname{Ker}\left(H_{2}\right)$.

Conversely, if $b \in \operatorname{Ker}\left(h_{1}\right)$ then $\Delta b=\nabla b=b \in \operatorname{Ker}\left(h_{1}\right)$, so by a): $b \in \operatorname{Ker}\left(H_{1}\right)=\operatorname{Ker}\left(H_{2}\right)$ so by a), $b=\Delta b=\nabla b \in \operatorname{Ker}\left(h_{2}\right)$.

Lemma 5.3.8. If $L$ and $L^{\prime}$ are Eukasiewicz algebras with axis $e$ and $e^{\prime}$ respectively, and $h \in E p i^{\left(\nabla e, \nabla e^{\prime}\right)}\left(B(L), B\left(L^{\prime}\right)\right)$ then its epimorphism extension $H$ verifies:
a) If $\Delta x=0$ then $H(x) \leq e^{\prime}$ and
b) $H(x)=0 \Longleftrightarrow h(\nabla x)=0$.

Proof. a) $H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)=\left(h(0) \vee e^{\prime}\right) \wedge h(\nabla x)=$ $\left(0 \vee e^{\prime}\right) \wedge h(\nabla x)=e^{\prime} \wedge h(\nabla x) \leq e^{\prime}$.
b) If $H(x)=0$ then $h(\nabla x)=H(\nabla x)=\nabla H(x)=\nabla 0=0$. If $h(\nabla x)=0$ then $H(x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge h(\nabla x)=\left(h(\Delta x) \vee e^{\prime}\right) \wedge 0=0$.

### 5.4. Homomorphism extensions

In 1965 A. Monteiro [42], presented a theorem about the extension of boolean algebras homomorphisms which generalizes results due to R. Sikorski [76]. Using these results by A. Monteiro, in 1970 L. Monteiro [52] established similar results for Łukasiewicz algebras.

Lemma 5.4.1. For a function h from a Eukasiewicz algebra L to a Eukasiewicz algebra $L^{\prime}$ to be a homomorphism it is necessary and sufficient that the following conditions hold:

- $h(0)=0, \quad h(1)=1$,
- $h(x \wedge y)=h(x) \wedge h(y), \quad h(x \vee y)=h(x) \vee h(y)$,
- $h(\Delta x)=\Delta h(x), \quad h(\nabla x)=\nabla h(x)$.

Definition 5.4.2. A function d from a Lukasiewicz algebra $L$ to a Lukasiewicz algebra $L^{\prime}$ is said to be a semihomomorphism if

Sh1) $d(1)=1$,
Sh2) $d(x \vee y)=d(x) \vee d(y)$,
Sh3) $d(\nabla x)=\nabla d(x)$.
Lemma 5.4.3. If $d$ is a semihomomorphism from a Łukasiewicz algebra $L$ to a Eukasiewicz algebra $L^{\prime}$ then

P1) If $x \leq y$ then $d(x) \leq d(y)$,
P2) $d(\Delta x) \leq d(x)$,
P3) $d(\Delta x) \in B\left(L^{\prime}\right)$,
P4) $d(\Delta x) \leq \Delta d(x)$,
P5) $\sim d(x) \leq d(\sim x)$.
Theorem 5.4.4. If $L$ is a Lukasiewicz algebra, $S$ a subalgebra of $L, C$ an injective Eukasiewicz algebra, $d$ a semihomomorphism from $L$ to $C, h$ a homomorphism from $S$ to $C$ such that (D) $h(s) \leq d(s)$ for all $s \in S$, then there exists a homomorphism $H$ from $L$ to $C$ such that a) $H$ extends $h$; b) $H(x) \leq d(x)$ for all $x \in L$.

Theorem 5.4.5. If $d$ is a semihomomorphism from a Eukasiewicz algebra $L$ to an injective Eukasiewicz algebra $C$ and if $a_{0} \in L \backslash\{0\}$ then there exists a homomorphism $H$ from $L$ to $C$ such that:
a) $H\left(\nabla a_{0}\right)=d\left(\nabla a_{0}\right)$,
b) $H(x) \leq d(x)$ for all $x \in L$.
L. Monteiro used the results indicated in [52] to establish a theorem of functional representation of monadic Łukasiewicz algebras in his doctoral dissertation [61], similar to the one used by P. Halmos in [21] for monadic boolean algebras.

### 5.5. Construction of the free boolean algebras from the free three valued Łukasiewicz algebras

The following results by A. Monteiro, were first published in 1995 in the "Informes Técnicos Internos" series of the INMABB, number 42. In 1996 they were reprinted in the "Notas de Lógica Matemática" series, volume 40, [48].

Remark 5.5.1. If $L$ is a Eukasiewicz algebra, $X \subseteq B(L)$, we denote with $F_{B}(X)$ the filter of the boolean algebra $B(L)$ generated by the set $X$. It is clear that $F_{B}(X)=F(X) \cap B(L)$.

Let $\mathcal{L}=\mathcal{L}(\alpha)$ be the Łukasiewicz algebra with a set $G=\left\{g_{i}: i \in I\right\}$ of free generators of cardinality $\alpha, \nabla G=\left\{\nabla g_{i}: i \in I\right\}$ and $F=F_{B}(\nabla G)$. Consider the quotient boolean algebra $B=B(\mathcal{L}) / F$ and represent by $C_{B}(b)$ the equivalence class of $B(\mathcal{L})$ containing the element $b \in B(\mathcal{L})$. Then:

Theorem 5.5.2. $B=B(\mathcal{L}) / F$ is a boolean algebra that has as free generators the elements $C_{B}\left(\Delta g_{i}\right), i \in I$, and the cardinal of the set $G^{*}=\left\{C_{B}\left(\Delta g_{i}\right): i \in I\right\}$ is equal to $\alpha$.

Proof. Let us prove that:
(i) $F$ is a proper filter of $B(\mathcal{L})$.
 elements $\nabla g_{i_{1}}, \nabla g_{i_{2}}, \ldots, \nabla g_{i_{n}} \in \nabla G$ such that:

$$
0=\bigwedge_{k=1}^{n} \nabla g_{i_{k}}=\nabla\left(\bigwedge_{k=1}^{n} g_{i_{k}}\right), \text { and therefore }: \bigwedge_{k=1}^{n} g_{i_{k}}=0
$$

Let $f$ be the transformation from $G$ to the Lukasiewicz algebra $\mathbf{T}=\{0, c, 1\}$, defined by:

$$
f\left(g_{i}\right)=1, \text { for all } i \in I
$$

then there exists a homomorphism $h$ from $\mathcal{L}$ to $T$ extending $f$ so:

$$
0=h(0)=h\left(\bigwedge_{k=1}^{n} g_{i_{k}}\right)=\bigwedge_{k=1}^{n} h\left(g_{i_{k}}\right)=\bigwedge_{k=1}^{n} f\left(g_{i_{k}}\right)=1 .
$$

This contradiction proves that $F$ is a proper filter of $B(\mathcal{L})$.
(ii) If $j, k \in I$, and $j \neq k$ then the equivalence classes $C_{B}\left(\Delta g_{j}\right)$ and $C_{B}\left(\Delta g_{k}\right)$ are different. ${ }^{2}$

Indeed assume that $C_{B}\left(\Delta g_{j}\right)=C_{B}\left(\Delta g_{k}\right)$, then we have that:
(1) $\Delta g_{j} \wedge t=\Delta g_{k} \wedge t$, where $t \in F$.

Consider the transformation $f$ from $G$ to the Lukasiewicz algebra T, defined for each $i \in I$ by:

$$
f\left(g_{i}\right)= \begin{cases}c, & \text { if } i=k \\ 1, & \text { if } i \neq k\end{cases}
$$

[^4]This transformation can be extended to a homomorphism $h$ from $\mathcal{L}$ to $\mathbf{T}$ such that:

$$
\text { (2) } \quad h\left(\nabla g_{i}\right)=\nabla h\left(g_{i}\right)=\nabla f\left(g_{i}\right)=1, \text { for every } i \in I .
$$

Let $D=h^{-1}(1)$ be the kernel of the homomorphism $h$, so $\nabla g_{i} \in D$, for all $i \in I$, and therefore
(3) $\quad F=F_{B}(\nabla G) \subseteq F(\nabla G) \subseteq D$.

From the definition of $f$ it follows that $f\left(g_{k}\right)=c$ and since by hypothesis $j \neq k$, then $f\left(g_{j}\right)=1$, so

$$
\begin{equation*}
h\left(\Delta g_{j}\right)=\Delta h\left(g_{j}\right)=\Delta f\left(g_{j}\right)=\Delta 1=1 \tag{4}
\end{equation*}
$$

and

$$
\text { (5) } \quad h\left(\Delta g_{k}\right)=\Delta h\left(g_{k}\right)=\Delta f\left(g_{k}\right)=\Delta(c)=0 .
$$

From (1) we deduce that:

$$
h\left(\Delta g_{j} \wedge t\right)=h\left(\Delta g_{k} \wedge t\right)
$$

this is

$$
\Delta h\left(g_{j}\right) \wedge h(t)=\Delta h\left(g_{k}\right) \wedge h(t)
$$

So by (4) and (5):

$$
\begin{equation*}
h(t)=1 \wedge h(t)=0 \wedge h(t)=0 \tag{6}
\end{equation*}
$$

Since $t \in F$ then by (3), we have that $h(t)=1$, which contradicts (6). This contradiction proves that (ii) holds. Then we can claim:

$$
\text { The set } G^{*}=\left\{C_{B}\left(\Delta g_{i}\right): i \in I\right\} \text { has cardinality } \alpha \text {. }
$$

Let $\varphi$ be the natural boolean homomorphism from $B(\mathcal{L})$ onto $B=B(\mathcal{L}) / F$, this is, if $b \in B(\mathcal{L})$ then $\varphi(b)=C_{B}(b)$. By Lemma 2.2.9 the homomorphism $\varphi$ transforms each set of generators of $B(\mathcal{L})$ into a set of generators of $B=B(\mathcal{L}) / F$. By Corollary 1.11.9 we know that $B(\mathcal{L})=S B(\Delta G \cup \nabla G)$, so:

$$
\left\{C_{B}\left(\Delta g_{i}\right): i \in I\right\} \cup\left\{C_{B}\left(\nabla g_{i}\right): i \in I\right\}
$$

is a set of generators of $B=B(\mathcal{L}) / F$. But, since for all $i \in I$, the equivalence class $C_{B}\left(\nabla g_{i}\right)=C_{B}(1)=F$ is the top element of $B=B(\mathcal{L}) / F$, we don't need to consider it as one of the generators and we can claim then that $G^{*}$ is a set of generators of $B=B(\mathcal{L}) / F$.
(iii) Every mapping $f^{\prime}$ of the set $G^{*} \subseteq B$ to the boolean algebra $B=\{0,1\} \subseteq$ T, can be extended to a boolean homomorphism $h^{\prime}$ from $B=B(\mathcal{L}) / F$ to $B$.

Consider the mapping $f$ from $G$ to $\mathbf{T}$ defined by the following conditions:

$$
f\left(g_{i}\right)= \begin{cases}1, & \text { if } f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=1 \\ c, & \text { if } f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=0\end{cases}
$$

As a consequence we have:

$$
\text { (7) } \quad \nabla f\left(g_{i}\right)=1 \text { for all } i \in I
$$

and

$$
\Delta f\left(g_{i}\right)= \begin{cases}1, & \text { if } f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=1 \\ 0, & \text { if } f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=0\end{cases}
$$

this is:
(8) $\quad \Delta f\left(g_{i}\right)=f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)$, for every $i \in I$.

The mapping $f$ from $G$ to $\mathbf{T}$, can be extended to a homomorphism $H$ from $\mathcal{L}$ to $\mathbf{T}$. Then by (7) we have:

$$
\text { (9) } \quad H\left(\nabla g_{i}\right)=\nabla H\left(g_{i}\right)=\nabla f\left(g_{i}\right)=1
$$

The kernel $N=H^{-1}(1)$ of this homomorphism is a deductive system of $\mathcal{L}$, and by (9) we have $\nabla G \subseteq N$, so $F(\nabla G) \subseteq N$, and therefore following Remark 5.5.1,

$$
F=F_{B}(\nabla G)=F(\nabla G) \cap B(\mathcal{L}) \subseteq N \cap B(\mathcal{L}) \subseteq N,
$$

so
(10) $\quad H(F)=\{1\}$.

By Lemma 5.3.6 a) we know that the homomorphism $H$ transforms boolean elements of $\mathcal{L}$ in boolean elements of $\mathbf{T}$, and since $B(\mathbf{T})=\{0,1\}$, then we have $H(B(\mathcal{L}))=\{0,1\}$.

Let $h$ be the restriction of $H$ to the set $B(\mathcal{L})$, then we can claim that $h$ is a boolean homomorphism from $B(\mathcal{L})$ onto $B(\mathbf{T})=\{0,1\} \subset \mathbf{T}$, and by (10) we have $h(F)=\{1\}$.

Notice that

$$
\text { "If } x, y \in B(\mathcal{L}) \text {, and } x \in C_{B}(y) \text {, then } h(x)=h(y) " .
$$

Indeed, since $x \in C_{B}(y)$ we have: $x \wedge d=y \wedge d$, for some $d \in F$, so

$$
h(x)=h(x) \wedge 1=h(x \wedge d)=h(y \wedge d)=h(y) \wedge 1=h(y) .
$$

From the result above it follows that if for each $x \in B(\mathcal{L})$, we define $h^{\prime}\left(C_{B}(x)\right)$ $=h(x)$, then $h^{\prime}$ is a function from $B=B(\mathcal{L}) / F$ onto $B(\mathbf{T})$. It is easy to prove that $h^{\prime}$ is a boolean homomorphism. We shall prove that $h^{\prime}$ extends $f^{\prime}$, this is that:

$$
h^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right), \text { for every } i \in I
$$

Using (8) we have that:

$$
h^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right)=h\left(\Delta g_{i}\right)=H\left(\Delta g_{i}\right)=\Delta H\left(g_{i}\right)=\Delta f\left(g_{i}\right)=f^{\prime}\left(C_{B}\left(\Delta g_{i}\right)\right) .
$$

Let us prove now that $G^{*}$ is a set of free generators of $B=B(\mathcal{L}) / F$.
(iv) Every mapping $f$ of the set $G^{*}$ to a boolean algebra $A$, can be extended to a boolean homomorphism from $B=B(\mathcal{L}) / F$ to $A$.

If $A$ has a single element, it evidently verifies (iv). If the boolean algebra $A$ is isomorphic to the boolean algebra $\{0,1\}$ then from (iii) it follows that (iv) holds.

Assume now that $A$ has more than one element and that $A$ is not simple, then it is well known that $A$ is isomorphic to a boolean subalgebra $A^{\prime}$ of the boolean algebra $P=\prod_{j \in J} A_{j}$ where $A_{j}=A / M_{j}$, and $\left\{M_{j}: j \in J\right\}$ is the set of all the maximal filters of $A$. We also know that $A_{j} \cong\{0,1\}$ for all $j \in J$. If $\left(x_{j}\right)_{j \in J} \in P$ we know that the $t$-th projection of $P$ on $A_{t}, t \in J$, is given by $\pi_{t}\left(\left(x_{j}\right)_{j \in J}\right)=x_{t}$.

Let $\alpha$ be the isomorphism from $A$ to $A^{\prime}$ and $f^{*}=\alpha \circ f$ so $f^{*}: G^{*} \rightarrow A^{\prime}$, and if $g^{*} \in G^{*}$ then $f^{*}\left(g^{*}\right)=g^{\prime}=\left(g_{j}^{\prime}\right)_{j \in J}$. Let $f_{j}=\pi_{j} \circ f^{*}, j \in J$. Then $f_{j}: G^{*} \rightarrow$
$A_{j} \simeq\{0,1\}$ so by (iii) each $f_{j}$ can be extended to a boolean homomorphism $h_{j}$ from $B=B(\mathcal{L}) / F$ onto $A_{j}$.

Let $h$ be the function from $B=B(\mathcal{L}) / F$ to $P$ defined by $h(x)=\left(h_{j}(x)\right)_{j \in J}$. Evidently $h$ is a boolean homomorphism. Let us prove that $h$ extends $f^{*}$. Indeed:

$$
\begin{gathered}
h\left(g^{*}\right)=\left(h_{j}\left(g^{*}\right)\right)_{j \in J}=\left(f_{j}\left(g^{*}\right)\right)_{j \in J}=\left(\pi_{j}\left(f^{*}\left(g^{*}\right)\right)\right)_{j \in J}=\left(\pi_{j}\left(\left(g_{j}^{\prime}\right)_{j \in J}\right)\right)_{j \in J}= \\
\left(g_{j}^{\prime}\right)_{j \in J}=g^{\prime}=f^{*}\left(g^{*}\right), \text { for every } g^{*} \in G^{*}
\end{gathered}
$$

Since $h\left(G^{*}\right)=f^{*}\left(G^{*}\right) \subseteq A^{\prime}$ then $\alpha^{-1}\left(h\left(G^{*}\right)\right) \subseteq \alpha^{-1}\left(A^{\prime}\right)=A$. Since $\alpha^{-1}$ and $h$ are homomorphisms then $\alpha^{-1} \circ h$ is a homomorphism from $B=B(\mathcal{L}) / F$ to $A$. Let us prove that $\alpha^{-1} \circ h$ is an extension of $f$. Indeed, $\left(\alpha^{-1} \circ h\right)\left(g^{*}\right)=\alpha^{-1}\left(h\left(g^{*}\right)\right)=$ $\alpha^{-1}\left(f^{*}\left(g^{*}\right)\right)=\alpha^{-1}\left((\alpha \circ f)\left(g^{*}\right)\right)=f\left(g^{*}\right)$.

Remark 5.5.3. When $G$ is finite and $N[G]=n \in \mathbb{N}$, we know that $N[\mathcal{L}]=$ $2^{2^{n}} \times 3^{3^{n}-2^{n}}$ and that $N[B(\mathcal{L})]=2^{3^{n}}$. By the preceding results,

$$
N\left[B(\mathcal{L}) / F_{B}(\nabla G)\right]=2^{2^{n}} .
$$

On the other hand, we know that every equivalence class (modulo $F_{B}(\nabla G)$ ) of $B(\mathcal{L})$ has the same number of elements, so:

$$
2^{2^{n}}=N\left[B(\mathcal{L}) / F_{B}(\nabla G)\right]=\frac{N[B(\mathcal{L})]}{N\left[F_{B}(\nabla G)\right]}=\frac{2^{3^{n}}}{N\left[F_{B}(\nabla G)\right]} .
$$

This proves that the number of elements of each equivalence class is: $2^{3^{n}-2^{n}}$.

### 5.6. Representation of a Łukasiewicz algebra by sets

Given a Lukasiewicz algebra $L$, let $E=\mathbf{P}(L)$ and for each $x \in L$ put $\mathcal{S}(x)=\{P \in E: x \in P\}$, then the transformation $\mathcal{S}$, which is called Stone's transformation, is a function from $L$ to the set $\mathcal{P}(E)=2^{E}$, of the parts of $E$. We know that $\left(2^{E}, \cap, \cup, \complement, E\right)$ is a boolean algebra and by Stone's results on distributive lattices:

SR1) $\mathcal{S}(0)=\emptyset$,
SR2) $\mathcal{S}(1)=E$,
SR3) $\mathcal{S}(x \wedge y)=\mathcal{S}(x) \cap \mathcal{S}(y)$,
SR4) $\mathcal{S}(x \vee y)=\mathcal{S}(x) \cup \mathcal{S}(y)$,
and also that the distributive lattice $L$ is isomorphic to $L^{\prime}=\mathcal{S}(L)$.
The following results by A. Monteiro, presented in a Seminar in 1966 [44] were published only in $1996^{3}$ [48].

For each $X \in 2^{E}$, put $\sim X=\complement \varphi(X)$, where $\varphi$ indicates the Birula-Rasiowa transformation (see section 2.5). The conditions St6) to St11) from Example 1.8.1 are then valid in $2^{E}$, and furthermore:

SR5) $\mathcal{S}(\sim x)=\sim \mathcal{S}(x)$, for all $x \in L$.
Since $\left(2^{E}, \cap, \cup, E\right)$ is a distributive lattice with bottom element $\emptyset$ and top
 Morgan algebra and by SR5) it follows that ( $\left.L^{\prime}=\mathcal{S}(L), \cap, \cup, \sim, E\right)$ is a De Morgan

[^5]subalgebra of $2^{E}$, and since $L^{\prime}$ is a lattice isomorphic to $L$ then $L$ and $L^{\prime}$ are isomorphic De Morgan algebras.

Consider the operator $\nabla$ defined on $2^{E}$ by:
St1) $\nabla \emptyset=\emptyset$,
St2) $\boldsymbol{\nabla}\{P\}=\{P, \varphi(P)\}$, for all $P \in 2^{E}$.
St3) If $\emptyset \subset X \subseteq E, \nabla X=\bigcup_{P \in X} \nabla\{P\}$.
As it was pointed out in Example 1.8.1 we know that $\left(2^{E}, \boldsymbol{\nabla}\right)$ is a monadic boolean algebra and that $\nabla X=X \cup \varphi(X)$.

If $X=\{P\}$ where $P \in E$, we write $\boldsymbol{\nabla} P$ instead of $\boldsymbol{\nabla}\{P\}$. Notice also that $\nabla \varphi(P)=\nabla P$.

We also proved in Example 1.8 .1 that in $L^{\prime}$ the operator $\boldsymbol{\nabla}$ verifies the axioms L6) and L7). The goal of the next two lemmas is to prove L8) holds too.

Lemma 5.6.1. $\nabla \mathcal{S}(\nabla x)=\mathcal{S}(\nabla x)$, for all $x \in L$.
Proof. If $x \in L$, then $\nabla x \in L$ and therefore $\mathcal{S}(\nabla x) \in L^{\prime}=\mathcal{S}(L)$. Since $\left(2^{E}, \nabla\right)$ is a monadic boolean algebra we have that $\mathcal{S}(\nabla x) \subseteq \nabla \mathcal{S}(\nabla x)$. Let $P \in$ $\nabla \mathcal{S}(\nabla x)=\underset{Q \in \mathcal{S}(\nabla x)}{ } \nabla Q=\underset{Q \in \mathcal{S}(\nabla x)}{\bigcup}\{Q, \varphi(Q)\}$. Then there exists $Q \in \mathcal{S}(\nabla x)$ such that $P \in\{Q, \varphi(Q)\}$, which is equivalent to sat that there exists $\left(^{*}\right) Q \in \mathcal{S}(\nabla x)$ such that: (1) $P=Q$, or (2) $P=\varphi(Q)$. In the former case we have that $P \in \mathcal{S}(\nabla x)$. If (2) holds, assume that $\varphi(Q)=P \notin \mathcal{S}(\nabla x)$, this is $\nabla x \notin P=$ $\varphi(Q)=\complement \sim Q$ then $\nabla x \in \sim Q$, so $\sim \nabla x \in Q$, and by Lemma 2.5.1 (b), $\nabla x \notin Q$, which contradicts (*).

Lemma 5.6.2. $\nabla \mathcal{S}(x)=\mathcal{S}(\nabla x)$, for all $x \in L$.
Proof. Since $x \leq \nabla x$, then $\mathcal{S}(x) \subseteq \mathcal{S}(\nabla x)$, so since the operator $\nabla$ is monotonous and using Lemma 5.6.1: $\nabla(\mathcal{S}(x)) \subseteq \nabla \mathcal{S}(\nabla x)=\mathcal{S}(\nabla x)$.

Let $P \in \mathcal{S}(\nabla x)$, this is $\nabla x \in P$. Since $L$ is in particular a Kleene algebra, we know that $\varphi(P)$ is comparable with $P$. Assume that $\varphi(P) \subseteq P$. Then we have that $Q=\varphi(P)$ verifies $Q \subseteq P=\varphi(\varphi(P))=\varphi(Q)$ so since $\nabla x \in \varphi(Q)=P$ it follows by Lemma 2.5.6 that $x \in \varphi(Q)=P$ and therefore $P \in \mathcal{S}(x) \subseteq \nabla \mathcal{S}(x)$, then $P \in \boldsymbol{\nabla} \mathcal{S}(x)$.

If $P \subseteq \varphi(P)$, since $\nabla x \in P$, then by Lemma 2.5.6 we have $x \in \varphi(P)$, this is $\varphi(P) \in \mathcal{S}(x)$, so $\{\varphi(P), P\}=\nabla \varphi(P) \subseteq \nabla \mathcal{S}(x)$, so $P \in \nabla \mathcal{S}(x)$.

Lemma 5.6.3. L8) $\nabla(X \cap Y)=\nabla X \cap \nabla Y$, for all $X, Y \in L^{\prime}=\mathcal{S}(L)$.
Proof. Let $X, Y \in L^{\prime}$, so $X=\mathcal{S}(x)$, and $Y=\mathcal{S}(y)$, where $x, y \in L$. Then $\nabla(X \cap Y)=\nabla(\mathcal{S}(x) \cap \mathcal{S}(y))=\nabla(\mathcal{S}(x \wedge y))=\mathcal{S}(\nabla(x \wedge y))=\mathcal{S}(\nabla x \wedge \nabla y)=$
$\mathcal{S}(\nabla x) \cap \mathcal{S}(\nabla y)=\nabla \mathcal{S}(x) \cap \nabla \mathcal{S}(y)=\nabla X \cap \nabla Y$.
Since ( $\left.L^{\prime}=\mathcal{S}(L), E, \sim, \cap, \cup\right)$ is a De Morgan algebra, where $\nabla$ verifies L6), L7) and L8), we deduce that ( $\left.L^{\prime}=\mathcal{S}(L), E, \sim, \nabla, \cap, \cup\right)$ is a Łukasiewicz algebra and since $L$ and $L^{\prime}$ are isomorphic De Morgan algebras, by Lemma 5.6.2, it follows that $L$ and $L^{\prime}$ are isomorphic Eukasiewicz algebras.

We shall prove now some results to be used in section 5.7.

In the monadic boolean algebra $\left(2^{E}, \nabla\right)$ the universal quantifier is defined by: $\Delta X=\complement \nabla \complement X$, for every $X \subseteq E$.

Lemma 5.6.4. If $X \subseteq E$ then:
a) $\nabla \complement X=\nabla \sim X$.
b) $\Delta \mathrm{C} X=\Delta \sim X$.

Proof. a) $\nabla \sim X=\nabla \complement \varphi(X)=\complement \varphi(X) \cup \varphi(\complement \varphi(X))=\varphi(\complement X) \cup \complement \varphi(\varphi(X))=$ $\varphi(\complement X) \cup \complement X=\nabla \complement X$.
b) $\Delta \sim X=\complement \nabla \complement \sim X=($ by part a) $)=\complement \nabla \sim \sim X=\complement \nabla X=\Delta \complement X$.

Corollary 5.6.5. If $X \in L^{\prime}$ then $\nabla \complement X \in L^{\prime}$.
Proof. If $X \in L^{\prime}$, then since $L^{\prime}$ is a De Morgan subalgebra of the De Morgan algebra $2^{E}$, we have that $\sim X \in L^{\prime}$. Then since $L^{\prime}$ is a Lukasiewicz algebra $\nabla \sim X \in L^{\prime}$.

By Lemma 5.6.4, $\nabla \complement X=\nabla \sim X$, and therefore we have that $\nabla \complement X \in L^{\prime}$.
Lemma 5.6.6. If $X \subseteq E$ then $\Delta X=X \cap \varphi(X)=\sim \nabla \sim X$.
Proof. $\Delta X=\complement \nabla \complement X=\complement(\complement X \cup \varphi(\complement X))=X \cap \complement \varphi(\complement X)=X \cap \varphi(\complement \complement X)=$ $X \cap \varphi(X)$.
$\Delta X=\complement \nabla \complement X=\complement(\complement X \cup \varphi(\complement X))=\complement \varphi(\complement X \cup \varphi(\complement X))=\sim(\complement X \cup \varphi(\complement X))=$ $\sim(\nabla \complement X)=\sim \nabla \sim X$.

Corollary 5.6.7. If $X \subseteq E$ then $\nabla X=\sim \Delta \sim X$.
Proof. $\sim \Delta \sim X=($ by Lemma 5.6.6 $)=\sim \sim \nabla \sim \sim X=\nabla X$.
Corollary 5.6.8. If $X \in L^{\prime}$ then $\Delta X \in L^{\prime}$.
Proof. If $X \in L^{\prime}$ then $\sim X \in L^{\prime}$, so $\nabla \sim X \in L^{\prime}$, and in consequence $\sim \nabla \sim X \in L^{\prime}$. So by Lemma 5.6.6, $\Delta X \in L^{\prime}$.

Corollary 5.6.9. If $X \in L^{\prime}$ then $\Delta C X \in L^{\prime}$.
Proof. If $X \in L^{\prime}$, then $\sim X \in L^{\prime}$, so by Corollary 5.6.8, $\Delta \sim X \in L^{\prime}$, and by Lemma 5.6.4, b) : $\Delta \complement X \in L^{\prime}$.

Lemma 5.6.10. For every $X, Y \in L^{\prime}$, we have:
a) $\nabla(X \cup Y)=\nabla X \cup \nabla Y$,
b) $\Delta(X \cup Y)=\Delta X \cup \Delta Y$,
c) $\Delta(X \cap Y)=\Delta X \cap \Delta Y$.

Proof. Since $\left(2^{E}, \boldsymbol{\nabla}\right)$ is a monadic boolean algebra, it is well known that a) and c) hold for every $X, Y \in 2^{E}$.

Since $\left(L^{\prime}, \nabla\right)$ is a Lukasiewicz algebra with necessity operator $\Delta$ by Lemma 5.6.6, then if $X, Y \in L^{\prime}$, b) holds.

Lemma 5.6.11. If $X, Y \in L^{\prime}$ then

$$
\begin{aligned}
\nabla(X \cap C Y) & =(\Delta X \cap \nabla \sim Y) \cup(\nabla X \cap \Delta \sim Y) \\
& =\nabla X \cap \nabla \sim Y \cap \Delta(X \cup \sim Y)
\end{aligned}
$$

Proof. $\boldsymbol{\nabla}(X \cap C Y)=($ by definition $)=(X \cap \complement Y) \cup \varphi(X \cap \complement Y)=(X \cap \complement Y) \cup$ $(\varphi(X) \cap \varphi(\complement Y))=(X \cup \varphi(X)) \cap(\complement Y \cup \varphi(\complement Y)) \cap(X \cup \varphi(\complement Y)) \cap(\varphi(X) \cup \complement Y)=$ (by definition) $=\nabla X \cap \nabla \subset Y \cap(X \cup \varphi(\complement Y)) \cap \varphi(X \cup \varphi(\complement Y))=$ (by Lemmas 5.6.4 a) and 5.6.6) $=\nabla X \cap \nabla \sim Y \cap \Delta(X \cup \varphi(\complement Y))=($ by definition of $\sim)=$ $\nabla X \cap \nabla \sim Y \cap \Delta(X \cup \sim Y)$.

Since $X, \sim Y \in L^{\prime}$ then, by Lemma 5.6.10 b), $\Delta(X \cup \sim Y)=\Delta X \cup \Delta \sim Y$, so

$$
\nabla(X \cap C Y)=\nabla X \cap \nabla \sim Y \cap(\Delta X \cup \Delta \sim Y)=(\Delta X \cap \nabla \sim Y) \cup(\nabla X \cap \Delta \sim Y)
$$

Corollary 5.6.12. If $X, Y \in L^{\prime}$ then $\boldsymbol{\nabla}(X \cap \complement Y) \in L^{\prime}$.
Proof. By hypothesis: (1) $X \in L^{\prime}$, and (2) $Y \in L^{\prime}$. From (1) we deduce (3) $\nabla X \in L^{\prime}$. From (2) it follows that (4) $\sim Y \in L^{\prime}$ and therefore (5) $\nabla \sim Y \in L^{\prime}$.

From (1) and (4) it follows that (5) $X \cup \sim Y \in L^{\prime}$, so by Corollary 5.6.8: (6) $\Delta(X \cup \sim Y) \in L^{\prime}$. From (3), (5) and (6) it follows, by Lemma 5.6.11 that $\nabla(X \cap \complement Y) \in L^{\prime}$.

### 5.7. Universality of the construction $\mathcal{L}$ of Łukasiewicz algebras

Let $(M, \exists)$ be a monadic boolean algebra. We saw in section 1.10 that starting from $M$, through construction $\mathcal{L}$, a Lukasiewicz algebra $\mathcal{L}(M)$ is obtained (A. Monteiro, [32], L. Monteiro, [70]). We shall prove now the following result by A. Monteiro which was presented in a 1966 Seminar [44] and published only in [48].

Theorem 5.7.1. (L. Monteiro, [65]) Given a Lukasiewicz algebra L, there exists a monadic boolean algebra $M$ such that $\mathcal{L}(M)$ is isomorphic to $L$, see ([45], p. 206).

The following result is well known:
Lemma 5.7.2. If $A$ is a boolean algebra and $R$ is a sublattice of $A$, such that $0,1 \in R$, then the boolean subalgebra of $A$ generated by $R$ is ([73], p. 74):

$$
B S(R)=\left\{x \in A: x=\bigvee_{i=1}^{n}\left(y_{i} \wedge-z_{i}\right), \text { where } y_{i}, z_{i} \in R\right\} .
$$

Let $L$ be a non trivial Łukasiewicz algebra, and $E=\mathbf{P}(L)$. We saw in section 5.6 that $\left(2^{E}, \boldsymbol{\nabla}\right)$ is a monadic boolean algebra and that $L$ is isomorphic to the Łukasiewicz algebra $L^{\prime}=\mathcal{S}(L) \subseteq 2^{E}$, where $\mathcal{S}$ is Stone's transformation. Since $L^{\prime}$ is a sublattice of the boolean algebra $2^{E}$, and $\emptyset, E \in L^{\prime}$, then

$$
B S\left(L^{\prime}\right)=\left\{X \in 2^{E}: X=\bigcup_{i=1}^{n}\left(Y_{i} \cap \subset Z_{i}\right), \text { where } Y_{i}, Z_{i} \in L^{\prime}\right\} .
$$

We prove now that: $\left(B S\left(L^{\prime}\right), \nabla\right)$ is a monadic subalgebra of the monadic boolean algebra $\left(2^{E}, \nabla\right)$.

Lemma 5.7.3. If $X \in B S\left(L^{\prime}\right)$ then $\nabla X \in L^{\prime}$.

Proof. If $X \in B S\left(L^{\prime}\right)$, then $X=\bigcup_{i=1}^{n}\left(Y_{i} \cap \complement Z_{i}\right)$ where $Y_{i}, Z_{i} \in L^{\prime}$, so $\nabla X=$ $\nabla\left(\bigcup_{i=1}^{n}\left(Y_{i} \cap \complement Z_{i}\right)\right)=\bigcup_{i=1}^{n} \nabla\left(Y_{i} \cap \complement Z_{i}\right)$. Since by Corollary 5.6.12, $\nabla\left(Y_{i} \cap \complement Z_{i}\right) \in L^{\prime}$, for every $i, 1 \leq i \leq n$, and $L^{\prime}$ is a sublattice of $2^{E}$ we have that $\nabla X \in L^{\prime}$.

Corollary 5.7.4. $\left(B S\left(L^{\prime}\right), \nabla\right)$ is a monadic subalgebra of the monadic boolean algebra $\left(2^{E}, ~ \nabla\right)$.

Proof. Indeed, if $X \in B S\left(L^{\prime}\right)$, then by Lemma 5.7.3, $\nabla X \in L^{\prime} \subseteq B S\left(L^{\prime}\right)$.

Corollary 5.7.5. $\nabla\left(B S\left(L^{\prime}\right)\right)=\Delta\left(B S\left(L^{\prime}\right)\right) \subseteq L^{\prime}$.
Proof. Since $B S\left(L^{\prime}\right)$ is a monadic boolean algebra, it is well known that $\nabla\left(B S\left(L^{\prime}\right)\right)=\Delta\left(B S\left(L^{\prime}\right)\right)$, and from Lemma 5.7.3, $\boldsymbol{\nabla}\left(B S\left(L^{\prime}\right)\right) \subseteq L^{\prime}$.

If $X, Y \in 2^{E}$ then (see section 5.6), if we define $X \sqcup Y=\Delta X \cup Y \cup(X \cap \Delta С Y)$ and $X \sqcap Y=\nabla X \cap Y \cap(X \cup \nabla \subset Y)$, in [70] we proved that:

Lemma 5.7.6. If $X, Y \in 2^{E}$, then
a) $\nabla(X \sqcup Y)=\nabla X \cup \nabla Y$.
b) $\nabla(X \sqcap Y)=\nabla X \cap \nabla Y$.
c) $\Delta(X \sqcup Y)=\Delta X \cup \Delta Y$.
d) $\Delta(X \sqcap Y)=\Delta X \cap \Delta Y$.

Lemma 5.7.7. If $X, Y \in L^{\prime}$ then $X \sqcup Y \in L^{\prime}$.
Proof. By Corollary 5.6.8, $\Delta X \in L^{\prime}$, and by Corollary 5.6.9, $\Delta \subset Y \in L^{\prime}$, so since $X \sqcup Y=\Delta X \cup Y \cup(X \cap \Delta \complement Y)$ and $L^{\prime}$ is a Eukasiewicz algebra, we have that $\Delta X \cup Y \cup(X \cap \Delta C Y) \in L^{\prime}$.

Lemma 5.7.8. If $X, Y \in L^{\prime}$ then $\Delta(X \cap C Y)=\Delta(X \cap \sim Y)=\Delta X \cap \Delta \sim Y$.
Proof. $\Delta(X \cap С Y)=\Delta X \cap \Delta \subset Y=($ by Lemma 5.6.4 b) $)=$
$\Delta X \cap \Delta \sim Y=\Delta(X \cap \sim Y)$.
Consider the congruence relation " $\equiv$ " defined on $B S\left(L^{\prime}\right)$, (see section 1.10) as follows:

$$
X, Y \in B S\left(L^{\prime}\right), X \equiv Y \quad \text { if and only if } \quad \nabla X=\nabla Y \text { and } \Delta X=\Delta Y
$$ If $X \in B S\left(L^{\prime}\right)$ we denote $C(X)=\left\{Y \in B S\left(L^{\prime}\right): Y \equiv X\right\}$.

Let $\mathcal{L}\left(B S\left(L^{\prime}\right)\right)=B S\left(L^{\prime}\right) / \equiv$, then A. Monteiro, [32], and L. Monteiro, [70], proved that:

Lemma 5.7.9. $\left(\mathcal{L}\left(B S\left(L^{\prime}\right)\right), C(E), \sim, \nabla, \sqcap, \sqcup\right)$ is a Lukasiewicz algebra, if the operations are defined by $\sim C(X)=C(С X), \nabla C(X)=C(\nabla X), C(X) \sqcap C(Y)=$ $C(X \sqcap Y)$ and $C(X) \sqcup C(Y)=C(X \sqcup Y)$.

We will prove that $\mathcal{L}\left(B S\left(L^{\prime}\right)\right)$ and $L$ are isomorphic Eukasiewicz algebras.
Lemma 5.7.10. If $X, Y \in L^{\prime}$ and $X \equiv Y$ then $X=Y$.

Proof. From $X, Y \in L^{\prime}$, it follows as $\left(L^{\prime}, \boldsymbol{\nabla}\right)$ is a Lukasiewicz algebra, that $\nabla X, \nabla Y \in L^{\prime}$ and by Corollary 5.6.8 $\Delta X, \Delta Y \in L^{\prime}$. By hypothesis $\nabla X=\nabla Y$, $\Delta X=\Delta Y$, and since $\nabla$ and $\Delta$ are the possibility and necessity operators of the Eukasiewicz algebra $L^{\prime}$, then Moisil's determination principle we have that $X=Y$.

Lemma 5.7.11. If $X, Y \in L^{\prime}$ then there exists a unique $Z \in L^{\prime}$ such that $X \cap C Y \equiv Z$.

Proof. Let $Z=(\Delta X \cap \sim Y) \cup(X \cap \Delta \sim Y)$, then it is clear that $Z \in L^{\prime}$.
(1) $\nabla Z=\nabla(\Delta X \cap \sim Y) \cup \nabla(X \cap \Delta \sim Y)=(\Delta X \cap \nabla \sim Y) \cup(\nabla X \cap \Delta \sim Y)=$ (by Lemma 5.6.11 b)) $=\nabla(X \cap C Y)$, and (2) $\Delta Z=($ by Lemma 5.6.10 b) $)$ $=\Delta(\Delta X \cap \sim Y) \cup \Delta(X \cap \Delta \sim Y)=($ Lemma 5.6 .10 c$))=(\Delta X \cap \Delta \sim Y) \cup$ $(\Delta X \cap \Delta \sim Y)=\Delta X \cap \Delta \sim Y=($ by Lemma 5.7.8 $)=\Delta(X \cap C Y)$, so $Z \equiv X \cap C Y$.

From (1) and (2) we deduce that $X \cap C Y \equiv Z$ and by Lemma 5.7.10, $Z$ is unique.

Lemma 5.7.12. If $A, B \in B S\left(L^{\prime}\right)$ then $A \cup B \equiv A \sqcup B \sqcup \Delta(A \cup B)$.
Proof. By Lemma 5.7.6:
$\nabla(A \sqcup B \sqcup \Delta(A \cup B))=\nabla A \cup \nabla B \cup \nabla \Delta(A \cup B)=\nabla A \cup \nabla B \cup \Delta(A \cup B)=$ $\nabla(A \cup B) \cup \Delta(A \cup B)=\nabla(A \cup B)$.
$\Delta(A \sqcup B \sqcup \Delta(A \cup B))=\Delta A \cup \Delta B \cup \Delta \Delta(A \cup B)=\Delta A \cup \Delta B \cup \Delta(A \cup B)=$ $\Delta(A \cup B)$.

Corollary 5.7.13. If $A, B \in B S\left(L^{\prime}\right), X, Y \in L^{\prime}$ and $A \equiv X, B \equiv Y$, then $A \cup B \equiv Z$, where $Z \in L^{\prime}$.

Proof. We saw in Lemma 5.7.12, that $A \cup B \equiv A \sqcup B \sqcup \Delta(A \cup B)$. By the hypothesis $A \equiv X, B \equiv Y$, we have that $A \sqcup B \equiv X \sqcup Y$ so $A \sqcup B \sqcup \Delta(A \cup B) \equiv$ $X \sqcup Y \sqcup \Delta(A \cup B)$. Finally, observe that since $A \cup B \in B S\left(L^{\prime}\right)$ then by Corollary 5.7.5 $\Delta(A \cup B) \in L^{\prime}$, so by Lemma 5.7.7, $Z=X \sqcup Y \sqcup \Delta(A \cup B) \in L^{\prime}$. Then $A \cup B \equiv Z$, with $Z \in L^{\prime}$.

Lemma 5.7.14. If $A \in B S\left(L^{\prime}\right)$, there exists $X \in L^{\prime}$ such that $A \equiv X$.
Proof. Let $A \in B S\left(L^{\prime}\right)$, then $A=\bigcup_{i=1}^{n} X_{i}$ where $X_{i}=Y_{i} \cap \subset Z_{i}$, and $Y_{i}, Z_{i} \in L^{\prime}$, for $1 \leq i \leq n$. By Lemma 5.7.11, $A_{i} \equiv W_{i}$, where $W_{i} \in L^{\prime}$, for $1 \leq i \leq n$.

If $n=1$, then the lemma holds trivially. Assume that $n \geq 2$. By Lemma 5.7.11, $X_{1} \equiv W_{1}$ and $X_{2} \equiv W_{2}$ with $W_{1}, W_{2} \in L^{\prime}$, so by Corollary 5.7.13, we have that: (1) $X_{1} \cup X_{2} \equiv H_{1}$, where $H_{1} \in L^{\prime}$.

Since (2) $X_{3} \equiv W_{3}$, with $W_{3} \in L^{\prime}$ then from (1) and (2) it follows by Corollary 5.7.13 that: $X_{1} \cup X_{2} \cup X_{3} \equiv H_{2}$, where $H_{2} \in L^{\prime}$. Applying this reasoning $n-1$ times we have that $\bigcup_{i=1}^{n} X_{i} \equiv H_{n-1}$, where $H_{n-1} \in L^{\prime}$, which ends the proof.

Lemma 5.7.15. The transformation $H$ from $L$ to $\mathcal{L}\left(B S\left(L^{\prime}\right)\right)$, defined by $H(x)=C(\mathcal{S}(x))$, verifies:
a) $H$ is biunivocal,
b) $H$ is surjective.

Proof. a) If $H(x)=H(y)$, this is $C(\mathcal{S}(x))=C(\mathcal{S}(y))$, then $\mathcal{S}(x) \equiv \mathcal{S}(y)$, and since $\mathcal{S}(x), \mathcal{S}(y) \in \mathcal{S}(L)=L^{\prime}$, then by Lemma 5.7.10, $\mathcal{S}(x)=\mathcal{S}(y)$, and since $\mathcal{S}$ is biunivocal it follows that $x=y$.
b) Given $C(A) \in \mathcal{L}\left(B S\left(L^{\prime}\right)\right)$, where $A \in B S\left(L^{\prime}\right)$, by Lemma 5.7.14, we know that there exists $X \in L^{\prime}=\mathcal{S}(L)$ such that $X \equiv A$, then since $X=\mathcal{S}(x)$, where $x \in L$, we have that $H(x)=C(\mathcal{S}(x))=C(X)=C(A)$.

Lemma 5.7.16. The transformation $H$ verifies:
a) $H(x \wedge y)=H(x) \sqcap H(y)$.
b) $H(x \vee y)=H(x) \sqcup H(y)$.
c) $H(\sim x)=\sim H(x)$.
d) $H(\nabla x)=\nabla H(x)$.

Proof. a) (1) $\boldsymbol{\nabla}(\mathcal{S}(x) \sqcap \mathcal{S}(y))=($ Lemma 5.7 .6 b$))=\boldsymbol{\nabla} \mathcal{S}(x) \cap \nabla \mathcal{S}(y)=$ (by Lemma 5.6.3) $=\boldsymbol{\nabla}(\mathcal{S}(x) \cap \mathcal{S}(y))$.
(2) $\Delta(\mathcal{S}(x) \sqcap \mathcal{S}(y))=($ by Lemma 5.7 .6 d$))=\Delta \mathcal{S}(x) \cap \Delta \mathcal{S}(y)=($ by Lemma 5.6.10 c) ) $=\Delta(\mathcal{S}(x) \cap \mathcal{S}(y))$.

From (1) and (2) it follows that $\mathcal{S}(x) \sqcap \mathcal{S}(y) \equiv \mathcal{S}(x) \cap \mathcal{S}(y)$, so

$$
\begin{aligned}
H(x \wedge y) & =C(\mathcal{S}(x \wedge y))=C(\mathcal{S}(x) \cap \mathcal{S}(y))=C(\mathcal{S}(x) \sqcap \mathcal{S}(y)) \\
& =C(\mathcal{S}(x)) \sqcap C(\mathcal{S}(y))=H(x) \sqcap H(y) .
\end{aligned}
$$

b) $(3) \nabla(\mathcal{S}(x) \sqcup \mathcal{S}(y))=($ by Lemma 5.7 .6 a) $)=$
$\nabla \mathcal{S}(x) \cup \nabla \mathcal{S}(y)=($ by Lemma 5.6.10 a) $)=\nabla(\mathcal{S}(x) \cup \mathcal{S}(y))$.
(4) $\Delta(\mathcal{S}(x) \sqcup \mathcal{S}(y))=($ by Lemma 5.7 .6 c) $)=$
$\Delta \mathcal{S}(x) \cup \Delta \mathcal{S}(y)=($ by Lemma 5.6 .10 b$))=\Delta(\mathcal{S}(x) \cup \mathcal{S}(y))$.
From (3) and (4) it follows that $\mathcal{S}(x) \sqcup \mathcal{S}(y) \equiv \mathcal{S}(x) \cup \mathcal{S}(y)$, so
$H(x \vee y)=C(\mathcal{S}(x \vee y))=C(\mathcal{S}(x) \cup \mathcal{S}(y))=C(\mathcal{S}(x) \sqcup \mathcal{S}(y))=$ $C(\mathcal{S}(x)) \sqcup C(\mathcal{S}(y))=H(x) \sqcup H(y)$.
c) $\nabla \mathcal{S}(\sim x)=($ by SR5 $))=\nabla \sim \mathcal{S}(x)=($ by Lemma 5.6.4 a $))=\nabla C \mathcal{S}(x)$, and $\Delta \mathcal{S}(\sim x)=($ by SR5 $))=\Delta \sim \mathcal{S}(x)=($ by Lemma 5.6 .4 b) $)=$ $\Delta \complement \mathcal{S}(x)$. Then $\mathcal{S}(\sim x) \equiv \complement \mathcal{S}(x)$ and therefore $H(\sim x)=C(\mathcal{S}(\sim x))=$ $C(\complement \mathcal{S}(x))=\sim C(\mathcal{S}(x))=\sim H(x)$.
d) $H(\nabla x)=C(\mathcal{S}(\nabla x))=($ by Lemma 5.6.2 $)=C(\nabla \mathcal{S}(x))=$ (by Lemma 5.7.9) $=\nabla C(\mathcal{S}(x))=\nabla H(x)$.

By Corollary 5.7.4, $M=B S\left(L^{\prime}\right)$ is a monadic boolean algebra and by Lemmas 5.7.15 and 5.7.16 we have that the Łukasiewicz algebra $L$ is isomorphic to $\mathcal{L}(M)$, which proves Theorem 5.7.1.

As we said before, this result was proved in a different way by L. Monteiro in [65].

### 5.8. A construction of the Lukasiewicz algebra with $n$ free generators

Let $M_{n}$ be the monadic boolean algebra with $n$ free generators. It is well known, [22], [64], that $M_{n}$ is a boolean algebra with $2^{n} \cdot 2^{\left(2^{n}-1\right)}$ atoms and that $K\left(M_{n}\right)$ is a boolean algebra with $2^{2^{n}}-1$ atoms. Furthermore, $(*)$ the partition
of the atoms of $M$ associated with $K\left(M_{n}\right)$ has $\binom{2^{n}}{i}$ classes with $i$ atoms of $M$, $1 \leq i \leq 2^{n}$.

Let $L=\mathcal{L}\left(M_{n}\right)$, then by Remark 1.10.4, the boolean algebras $B(L)$ and $K\left(M_{n}\right)$ are isomorphic.

We know that the Łukasiewicz algebra $L_{n}$ with $n$ free generators has $2^{2^{n}} \cdot 3^{3^{n}-2^{n}}$ elements and that $B\left(L_{n}\right)$ has $3^{n}$ atoms, so if $L \cong L_{n}$ we would have that $B(L) \cong$ $B\left(L_{n}\right)$ so $2^{2^{n}}-1=3^{n}$, and this holds only for $n=1$. Then if $n>1$ we have that the Łukasiewicz algebras $\mathcal{L}\left(M_{n}\right)$ and $L_{n}$ are not isomorphic.

Let us see how we can determine $L_{n}$ from $\mathcal{L}\left(M_{n}\right)$ when $n>1$. By (*) and Remark 3.3.10 we know that

$$
\mathcal{L}\left(M_{n}\right) \cong \mathbf{B}^{2^{n}} \times \mathbf{T}^{2^{2 n}-1-2^{n}}
$$

If

$$
b=(\underbrace{1,1, \ldots, 1}_{2^{n}} \underbrace{\underbrace{1,1, \ldots, 1}_{3^{n}-2^{n}}, 0,0, \ldots, 0}_{2^{2^{n}}-1-2^{n}}),
$$

then by Remark 5.3.5

$$
\mathcal{L}\left(M_{n}\right) /[b) \cong(b] \cong \mathbf{B}^{2^{n}} \times \mathbf{T}^{3^{n}-2^{n}}
$$

### 5.9. Determinant system of a Łukasiewicz algebra

The proof of the following results about De Morgan and Kleene algebras can be found, for instance, in [51].

If $M$ is a De Morgan algebra, and $X \subseteq M$, let

$$
\sim X=\{x \in M: \sim x \in X\}
$$

If $P \in \mathbf{P}(M)$ then we know that $\varphi(P)=\complement \sim P$, is the Birula-Rasiowa transformation [6], [7], from $\mathbf{P}(M)$ to $\mathbf{P}(M)$, which verifies (1) $\varphi(\varphi(P))=P$, and (2) If $P, Q \in \mathbf{P}(M)$ then $P \subseteq Q$ if and only if $\varphi(Q) \subseteq \varphi(P)$.

Lemma 5.9.1. If $P \in \mathbf{P}(M)$ then:
a) $\sim x \in P \Longleftrightarrow x \notin \varphi(P)$,
b) $\sim x \notin P \Longleftrightarrow x \in \varphi(P)$.

If $K$ is a Kleene algebra, then
If $P \in \mathbf{P}(K)$ then : $P \subseteq \varphi(P)$ or $\varphi(P) \subseteq P$.
Let us denote with $\mathbf{P}_{1}(K)$ the set of all the filters $P \in \mathbf{P}(K)$ such that $P \subseteq$ $\varphi(P)$. Then $\mathbf{P}_{1}(K) \subseteq \mathbf{P}(K)$.

Since every Lukasiewicz algebra $L$ is a Kleene algebra, then if $b \in B(L)$, the boolean complement of $b$, which we denote by $-b$, is equal to $\sim b$, this is $-b=\sim b$. The original proof by A. Monteiro was reproduced in [11]. A simpler proof was obtained, as announced in [45], by L. Monteiro, [59].

If $R$ is a non trivial finite distributive lattice, we represent by $\Pi=\Pi(R)$ the poset of the prime elements of $R$.

Theorem 5.9.2. If $R$ y $R^{\prime}$ are non trivial finite distributive lattices such that $\Pi=\Pi(R), \Pi^{\prime}=\Pi\left(R^{\prime}\right)$ are isomorphic posets then $R$ and $R^{\prime}$ are isomorphic lattices.

Proof. Let $f: \Pi \rightarrow \Pi^{\prime}$ be an order isomorphism and put by definition:

$$
H(x)= \begin{cases}0, & \text { if } x=0 \\ \bigvee\{f(p): p \in \Pi, p \leq x\}, & \text { if } x \neq 0\end{cases}
$$

then it is easy to check that $H: R \rightarrow R^{\prime}$ is a lattice isomorphism and $H(p)=f(p)$ for all $p \in \Pi$.

Corollary 5.9.3. Every non trivial finite distributive lattice $R$, is determined up to isomorphisms, by the set $\Pi=\Pi(R)$ of its prime elements.

Let $X$ be a poset, a subset $Y$ of $X$ is said to be a lower section of $X$, if $Y=\emptyset$ or if it verifies "If $y \in Y$ and $x \leq y$ then $x \in Y$ ". The subsets $(x]=\{y \in X: y \leq x\}$ are lower sections of $X$.

We represent by $\mathbf{S}(X)$ the set of all the lower sections of $X$.
Theorem 5.9.4. (G. Birkhoff.) If $X$ is a finite poset, there exists a finite distributive lattice $R$ such that $X$ and $\Pi(R)$ are isomorphics posets.

Proof. It is well known that $(\mathbf{S}(X), \cap, \cup, \emptyset, X)$ is a bounded distributive lattice. Since $X$ is finite then the distributive lattice $\mathbf{S}(X)$ is finite as well.

It is easy to prove that $\Pi(\mathbf{S}(X))=\{(x]: x \in X\}$, and if we put $\beta(x)=(x]$, for all $x \in X$ then $\beta$ is an order isomorphism from $X$ to $\Pi(\mathbf{S}(X))$.

Definition 5.9.5. Let $X$ be a finite poset. We say that $x \in X$ is linked to $y \in X$, if there exists a finite sequence of elements of $X, a_{1}, a_{2}, \cdots, a_{n}$ such that $a_{1}=x, a_{n}=y$, and $a_{i}$ is comparable to $a_{i+1}, 1 \leq i \leq n-1$. To denote that a is comparable to $b$, we write $a \| b$, and to indicate that $x$ is linked to $y$ we write $x \approx y$.

If $x \neq y$, with $x, y \in X$, we can assume that the elements $a_{i}, 1 \leq i \leq n$, verify $a_{i} \neq a_{j}, i \neq j, 1 \leq i, j \leq n$.

It is well known that the relation $\approx$ is an equivalence relation defined over $X$. Let $K(x)=\{y \in X: y \approx x\}$ be the equivalence class containing element $x \in X$. Observe that if $y \notin K(x)$, then $y$ is incomparable with every element in $K(x)$.

Let $K\left(x_{1}\right), K\left(x_{2}\right), \ldots, K\left(x_{n}\right)$ be the equivalence classes. It is well known that the subsets $K\left(x_{i}\right), 1 \leq i \leq n$, of $X$ are connected posets, which we can denominate connected components of $X$, and that the poset $X$ is the cardinal sum of the posets $K\left(x_{i}\right), 1 \leq i \leq n$, this is:

$$
X=\sum_{i=1}^{n} K\left(x_{i}\right) .
$$

Notice also that the sets $K\left(x_{i}\right)$ are pairwise disjoint, and that each element $\left(^{*}\right) a \in K\left(x_{i}\right)$ is incomparable with every $b \in K\left(x_{j}\right)$ if $i \neq j$.

We can assume that the elements $x_{i}, 1 \leq i \leq n$ are maximal elements of the poset $X$. Indeed, each $K\left(x_{i}\right)$ is a finite poset, so there exist $m \in K\left(x_{i}\right), m$ a maximal element of $K\left(x_{i}\right)$. Let us see that $m$ is also a maximal element of $X$. If $x \in X$ is such that $m \leq x$, since $m \in K\left(x_{i}\right)$, then by $\left(^{*}\right) m$ is incomparable with every element $y \in K\left(x_{j}\right), j \neq i$, so $x \in K\left(x_{i}\right)$ and since $m$ is a maximal element
of $K\left(x_{i}\right)$ we have that $x_{i}=m$. This shows that $m$ is a maximal element of $X$. Then we can write:

$$
X=\sum_{i=1}^{n} K\left(x_{i}\right),
$$

where $x_{i}, 1 \leq i \leq n$ are maximal elements of the poset $X$.
Lemma 5.9.6. If $R$ is a non trivial finite distributive lattice, where the poset $\Pi=\Pi(R)$ of its prime elements is isomorphic to the poset $X=X_{1}+X_{2}$ and if $R_{i}, i=1,2$ is a distributive lattice whose set of prime elements is isomorphic to $X_{i}, i=1,2$ then $R$ is isomorphic to $R_{1} \times R_{2}$.

If $R$ is a finite distributive lattice, then we know that $P \in \mathbf{P}(R)$ if and only if $P=F(p)=\{x \in R: p \leq x\}$, where $p \in \Pi=\Pi(R)$.

Let $A$ be a De Morgan algebra, so in this case the Birula-Rasiowa transformation $\varphi$ from $\mathbf{P}(A)$ to $\mathbf{P}(A)$, induces a transformation $\psi$ from $\Pi=\Pi(A)$ to $\Pi$ as follows:

$$
\begin{equation*}
\psi(p)=q \text { if and only if } \varphi(F(p))=F(q) \tag{5.9.1}
\end{equation*}
$$

The transformation $\psi$ has the following properties:
Inv1) $\psi(\psi(p))=p$, for all $p \in \Pi$,
Inv2) $p \leq q$ if and only if $\psi(q) \leq \psi(p)$, where $p, q \in \Pi$.
This means that $\psi$ is an anti-isomorphism of the poset $\Pi$ onto $\Pi$ of period 2 . We say that the pair $(\Pi(A), \psi)$ is the determinant system of the algebra $A$.

Definition 5.9.7. A Birula-Rasiowa space is a pair $(X, \alpha)$ formed by a poset $X$ and a transformation $\alpha$ from $X$ to $X$ such that:

Inv1) $\alpha(\alpha(x))=x$, for every $x \in X$,
Inv2) $x \leq y$ if and only if $\alpha(y) \leq \alpha(x)$, where $x, y \in X$.
It is clear that $\alpha$ is a bijective mapping from $X$ to $X$, and that the determinant system of a De Morgan algebra is a Birula-Rasiowa space.

Definition 5.9.8. Two Birula-Rasiowa spaces $(X, \alpha),\left(X^{\prime}, \alpha^{\prime}\right)$ are said to be isomorphic if there exists an order isomorphism $f$ from $X$ onto $X^{\prime}$ such that $f(\alpha(x))=\alpha^{\prime}(f(x))$ for all $x \in X$.

Theorem 5.9.9. (A. Monteiro, [35], [38], [43], [51]). If $(A, \sim)$ is a non trivial finite De Morgan algebra, and if $(\Pi=\Pi(A), \psi)$ is its determinant system then

$$
\sim x=\bigvee\{p \in \Pi: \psi(p) \not \leq x\} .
$$

If we put $\Pi_{x}=\{p \in \Pi: p \leq x\}$ then L. Monteiro proved in [51] that:
Lemma 5.9.10. If $(A, \sim)$ is a non trivial finite De Morgan algebra, then

$$
\begin{gathered}
\sim x=\bigvee\left\{p \in \Pi: p \in \psi\left(\Pi \backslash \Pi_{x}\right)\right\}= \\
\bigvee\left\{p: p \in \Pi \backslash \psi\left(\Pi_{x}\right)\right\}=\bigvee\left\{\psi(q): q \in \Pi \backslash \Pi_{x}\right\}
\end{gathered}
$$

Theorem 5.9.11. If $(A, \sim)$ and $\left(A^{\prime}, \sim^{\prime}\right)$ are non trivial finite De Morgan algebras such that their determinant systems $(\Pi=\Pi(A), \psi),\left(\Pi^{\prime}=\Pi\left(A^{\prime}\right), \psi^{\prime}\right)$ are isomorphic Birula-Rasiowa spaces, then the De Morgan algebras $(A, \sim)$ and ( $\left.A^{\prime}, \sim^{\prime}\right)$ are isomorphic as well.

Corollary 5.9.12. Every non trivial finite De Morgan $(A, \sim)$ is determined, up to isomorphisms, by its determinant system $(\Pi=\Pi(A), \psi)$.

The previous result was announced in 1960, [35] and its proof presented in 1962, [38], [43], [51]. According to his own words, [45] A. Monteiro's proof from 1960 was too complicated.

Theorem 5.9.13. If $(X, \alpha)$ is a finite Birula-Rasiowa space, there exists a finite De Morgan algebra $(A, \sim)$, such that its determinant system $(\Pi=\Pi(A), \psi)$ is a Birula-Rasiowa space isomorphic to $(X, \alpha)$. [51]

Proof. We know that $\mathbf{S}(X)$ is a distributive lattice such that $\Pi(\mathbf{S}(X))$ is a poset isomorphic to $X$. The transformation $\alpha: X \rightarrow X$ induces a transformation $\psi: \Pi(\mathbf{S}(X)) \rightarrow \Pi(\mathbf{S}(X))$ of the following manner: $\psi((x])=(\alpha(x)]$, for all $x \in X$.

For each lower section $Y$ of $X$ let us put (see Lemma 5.9.10):

$$
\sim Y=\bigcup\left\{\psi((x]):(x] \in \Pi(\mathbf{S}(X)) \backslash \Pi_{Y}\right\}
$$

Then it is easy to prove that $\sim Y=X \backslash \alpha(Y)$. We prove now that $\sim Y$ is a lower section of $X$. If $\sim Y=X \backslash \alpha(Y)=\emptyset$, then $\sim Y$ is a lower section. If $\sim Y=X \backslash \alpha(Y) \neq \emptyset$, let (1) $p \in X \backslash \alpha(Y)$, and $x \in X$ be such that $x \leq p$. Then (2) $\alpha(p) \leq \alpha(x)$. If $x \notin X \backslash \alpha(Y)$, then $x \in \alpha(Y)$ this is $x=\alpha\left(y^{\prime}\right)$, where $y^{\prime} \in Y$, so (3) $\alpha(x)=y^{\prime} \in Y$. Since $Y \in \mathbf{S}(X)$ then from (2) and (3) we deduce that $\alpha(p) \in Y$ so $p=\alpha(\alpha(p)) \in \alpha(Y)$, which contradicts (1). Furthermore:

- $\sim X=X \backslash \alpha(X)=X \backslash X=\emptyset$,
- $\sim(\sim Y)=X \backslash \alpha(\sim Y)=X \backslash \alpha(X \backslash \alpha(Y))$. Then, as $\alpha$ is a period 2 bijection, we have that: $\sim(\sim Y)=X \backslash(\alpha(X) \backslash Y)=X \backslash(X \backslash Y)=$ $X \cap Y=Y$.
- Since $\alpha$ is biunivocal then $\sim(Y \cap Z)=X \backslash \alpha(Y \cap Z)=X \backslash(\alpha(Y) \cap \alpha(Z))=$ $(X \backslash \alpha(Y)) \cup(X \backslash \alpha(Z))=\sim Y \cup \sim Z$.
Thus $(\mathbf{S}(X), \sim)$ is a De Morgan algebra. Let us see that the Birula-Rasiowa spaces $(X, \alpha)$ and $(\Pi(\mathbf{S}(X)), \psi)$ are isomorphic. We already know that the transformation $\beta: X \rightarrow \Pi(\mathbf{S}(X))$, defined by $\beta(x)=(x], x \in X$ is an order isomorphism. By the definition of $\psi$, we have that: $\beta(\alpha(x))=(\alpha(x)]=\psi((x])=$ $\psi(\beta(x))$, which concludes the proof.

Let $A$ be a non trivial finite De Morgan algebra, $\Pi=\Pi(A)$ the set of its prime elements and $\Pi=\sum_{i=1}^{n} X_{i}$, where $X_{i}, 1 \leq i \leq n$, are the connected components of П. In general, if $p \in X_{i}$ we cannot claim that $\alpha(p) \in X_{i}$, but for finite Kleene algebras we have that:

$$
\psi\left(X_{i}\right)=X_{i}, 1 \leq i \leq n
$$

since $\alpha(p) \| p$ for all $p \in \Pi$.

Let $A$ be a non trivial finite De Morgan algebra, $(\Pi=\Pi(A), \psi)$ its determinant system and $\Pi=\sum_{i=1}^{n} K\left(p_{i}\right)$. It is clear that if $p, q \in \Pi, p \approx q$, then $\psi(p) \approx \psi(q)$, so:

- If $\psi(p) \in K(p)$ then $\psi(K(p))=K(p)$.
- If $q=\psi(p) \notin K(p)$ then $\psi(K(p))=K(q)$, and $\psi(K(p)+K(q))=$ $K(p)+K(q)$.
We say that in the first case $(K(p), \psi)$ and, in the second case, $(K(p)+K(q), \psi)$ are $\psi$-connected components of $(\Pi, \psi)$, and that the respective Birula-Rasiowa spaces $(K(p), \psi)$ and $(K(p)+K(q), \psi)$ are undecomposable.

In the case in which $A$ is a finite Kleene algebra, every connected component of $\Pi(A)$ is a $\psi$-connected component of $\Pi(A)$.

Lemma 5.9.14. If $A$ is a non trivial De Morgan algebra, and its determinant system $(\Pi=\Pi(A), \psi)$ is isomorphic to the Birula-Rasiowa space $(X, \alpha)$ where $X=X_{1}+X_{2}, \alpha\left(X_{1}\right)=X_{1}, \alpha\left(X_{2}\right)=X_{2}$ and if $A_{i} ; i=1,2$ is a De Morgan algebra whose determinant system $\left(\Pi\left(A_{i}\right), \psi_{i}\right)$ is isomorphic to $\left(X_{i},\left.\alpha\right|_{X_{i}}\right) ; i=1,2$, then $A$ is isomorphic to $A_{1} \times A_{2}$.

Definition 5.9.15. A Kleene space is a Birula-Rasiowa space $(X, \alpha)$ such that every $x \in X$ is comparable with $\alpha(x)$.

Lemma 5.9.16. For a finite De Morgan algebra $A$ to be a Kleene algebra it is necessary and sufficient that its determinant system $(\Pi=\Pi(A), \psi)$ is a Kleene space.

Proof. It is clear that the condition is necessary. Let us see that it is sufficient. If $y \wedge \sim y=0$ then the Kleene condition holds. Assume that $y \wedge \sim y \neq 0$. To prove that the Kleene condition holds it is enough to check that:

$$
\{p \in \Pi: p \leq y \wedge \sim y\} \subseteq\{q \in \Pi: q \leq z \vee \sim z\}
$$

Let $p \in \Pi$ be such that (1) : $p \leq y \wedge \sim y$. By hypothesis (2) $\psi(p) \leq p$, or (3) $p \leq \psi(p)$. If (2) holds then by (1) we have : $\psi(p) \leq y \wedge \sim y$, then in particular $\psi(p) \leq \sim y=\bigvee\left\{\psi(q): q \in \Pi \backslash \Pi_{y}\right\}$, from where it follows, since $\psi(p) \in \Pi$, that $\psi(p) \leq \psi\left(q_{0}\right)$, for some $q_{0} \in \Pi \backslash \Pi_{y}$. Thus $q_{0} \leq p$ and by (1) we have that $q_{0} \leq y \wedge \sim y \leq y$, so $q_{0} \in \Pi_{y}$, contradiction. Therefore condition (3) must hold. If $\psi(p) \not \leq z$ then $\psi(p) \in \Pi \backslash \Pi_{z}$, so (4): $\psi(p) \leq \sim z \leq z \vee \sim z$. From (3) and (4) we have $p \leq z \vee \sim z$. If $\psi(p) \leq z$, then $p \leq z \leq z \vee \sim z$.

Theorem 5.9.17. If $(A, \sim)$ and $\left(A^{\prime}, \sim^{\prime}\right)$ are non trivial finite Kleene algebras such that their determinant systems $(\Pi=\Pi(A), \psi),\left(\Pi^{\prime}=\Pi\left(A^{\prime}\right), \psi^{\prime}\right)$ are isomorphic Kleene spaces, then the Kleene algebras $(A, \sim)$ and $\left(A^{\prime}, \sim^{\prime}\right)$ are isomorphic as well.

Corollary 5.9.18. Every non trivial finite Kleene algebra, $(A, \sim)$ is determined, up to isomorphisms, by its determinant system $(\Pi=\Pi(A), \psi)$.

Theorem 5.9.19. If $(X, \alpha)$ is a finite Kleene space, there exists a finite Kleene algebra $(A, \sim)$ such that its determinant system $(\Pi=\Pi(A), \psi)$ is a Kleene space isomorphic to $(X, \alpha)$.

Remark 5.9.20. a) If $X=\{x\}$, then $\alpha(x)=x$, and $A=\{0,1\}$, where $0<1$, $\sim 0=1$ and $\sim 1=0$.
b) If $X=\{x, y\}$, where $x<y, \alpha(x)=y$ y $\alpha(y)=x$, then $A=\{0, c, 1\}$, where $0<c<1, \sim 0=1, \sim 1=0$, and $\sim c=c$.

Let $L$ be a finite Lukasiewicz algebra. Then $(\mathbf{P}(L), \subseteq)$ is a finite poset and

$$
\mathbf{P}(L)=\sum_{i=1}^{n} K\left(P_{i}\right)
$$

where $P_{i}, 1 \leq i \leq n$ are the maximal elements of the poset $(\mathbf{P}(L), \subseteq)$. We shall prove that $K(P)=\{P, \varphi(P)\}$, for every maximal element $P$ of $\mathbf{P}(L)$, this is $P \in \mathbf{U}(L)$. Since $U \| \varphi(U)$, for all $U \in \mathbf{U}(L)$, then $\{U, \varphi(U)\} \subseteq K(U)$.

It is clear that $\mathcal{V}=\{U \in \mathbf{U}(L): U \in \mathbf{p}(L)\}, \mathcal{W}=\{U \in \mathbf{U}(L): U \notin \mathbf{p}(L)\}$, is a bipartition of the set $\mathbf{U}(L)$.

If $U \in \mathcal{V}$, (1) $U \in \mathbf{U}(L)$ and (2) $U \in \mathbf{p}(L)$. Since $L$ is a Kleene algebra then $(3) U \subseteq \varphi(U)$ or (4) $\varphi(U) \subseteq U$. From (1) and (3) or from (2) and (4) we have: $U=\varphi(U)$. Let $P \in K(U)$, where $U \in \mathcal{V}$, then there exists a sequence $P_{1}, P_{2}, \ldots, P_{n}$ of elements of $\mathbf{P}(L)$ such that: $P_{1}=U, P_{n}=P$, and $P_{i} \| P_{i+1}$, $P_{i} \neq P_{i+1} 1 \leq i \leq n-1$. By hypothesis $U \| P_{2}$, so if $U \subseteq P_{2}$, since $U$ is an ultrafilter we have: $P_{2}=U$. If $P_{2} \subseteq U$, since $U$ is a minimal prime filter minimal we have: $P_{2}=U$. Then $P=U$, for all $P \in K(U)$, so $K(U)=\{U\}$.

If $U \in \mathcal{W}$, (1) $U \in \mathbf{U}(L)$ and (2) $U \notin \mathbf{p}(L)$, then there exists (3) $M \in \mathbf{p}(L)$ such that (4) $M \subseteq U$, then $M \in K(U)$. By (2) we have that (5) $M \notin \mathbf{U}(L)$. By Corollary 2.5.16 we know that (6) $\varphi(M)$ is the unique proper filter containing $M$ as a proper part. From (5) and (6) we deduce that $U=\varphi(M)$, this is $M=\varphi(U)$.

Let us see that in this case:
Lemma 5.9.21. Let $U$ be such that $U \in \mathbf{U}(L), U \notin \mathbf{p}(L)$ and $M=\varphi(U) \subseteq U$. Then:
a) If $Q \| U$ and $Q \neq U$ then $Q=M$.
b) If $Q \| M$ and $M \neq Q$ then $Q=U$.
c) If $U \in \mathcal{W}$ then $K(U)=\{U, \varphi(U)\}$.

## Proof.

a) Since $Q \| U, Q \neq U$ and $U$ is an ultrafilter of $L$ then $Q \subseteq U$.

If $Q \notin \mathbf{p}(L)$, then there exists $P_{1} \in \mathbf{p}(L)$ such that $P_{1} \subseteq Q \subseteq U$, which is impossible by Corollary 2.5.14. So we have that $Q \in \mathbf{p}(L)$, then: $Q, M \subseteq U, Q, M \in \mathbf{p}(L), Q, M \notin \mathbf{U}(L)$ and by Corollary 2.5.16, $Q=M=\varphi(M)$.
b) From $Q \| M$, it follows that $Q \subseteq M$ or $M \subseteq Q$. Since $Q \neq M$, and $M$ is a minimal prime filter we must have $M \subseteq Q$. We deduce then that $M \notin \mathbf{U}(L)$ and since $M \in \mathbf{p}(L)$ it follows by Corollary 2.5.16 that $Q=U$.
c) Since $U \in \mathcal{W}$ and $P \in K(U)$, then there exists a sequence $P_{1}, P_{2}, \ldots, P_{n}$ of elements of $\mathbf{P}(L)$ such that $P_{1}=U, P_{n}=P$, and $P_{i} \| P_{i+1}, P_{i} \neq P_{i+1}$, $1 \leq i \leq n-1$. Since $P_{2} \| U, P_{2} \neq U$, then by a), $P_{2}=M$. Since
$M=P_{2} \| P_{3}$ and $P_{2} \neq P_{3}$, then by b) we have $P_{3}=U$. Then $K(U)=$ $\{U, \varphi(U)\}$.

Remark 5.9.22. From the lemma above, if $L$ is a non trivial finite Łukasiewicz algebra, the connected components of $\mathbf{P}(L)$ are of the form $(A)\{F(p)\}=\{\varphi(F(p))\}$ or (B) $\{F(p), \varphi(F(p))\}$, where $p \in \Pi$, is a minimal element of $\Pi$. Then the poset $\Pi$ is the cardinal sum of posets $\Pi_{i}, 1 \leq i \leq n$ where each $\Pi_{i}$ is a chain with one or two elements. Notice furthermore that in case (A), since $F(p)=\varphi(F(p))$ then $\psi(p)=p$, and in case $(B) F(q)=\varphi(F(p)) \subseteq F(p)$ if $p<q$ and $\psi(q)=p$, with both $p, q \in \Pi$.

Notice that if $L$ is a Lukasiewicz algebra, we have that for all $x \in L$ :

$$
\nabla x=\bigwedge\{b \in B(L): x \leq b\} ; \Delta x=\bigvee\{b \in B(L): b \leq x\}
$$

Theorem 5.9.23. If $L, L^{\prime}$ are non trivial finite Eukasiewicz algebras such that their determinant systems $(\Pi=\Pi(L), \psi),\left(\Pi^{\prime}=\Pi\left(L^{\prime}\right), \psi^{\prime}\right)$ are isomorphic Kleene spaces, then the Eukasiewicz algebras $L$ and $L^{\prime}$ are isomorphic as well.

Proof. We know that the function $H: L \rightarrow L^{\prime}$ defined in Theorem 5.9.2 is a Kleene algebra isomorphism from $L$ to the Kleene algebra $L^{\prime}$ (see Theorems 5.9.11 and 5.9.17).

Let us prove that $H$ verifies $\left(^{*}\right) H(\nabla x)=\nabla H(x)$, for all $x \in L$. It is clear that if $x=0,\left(^{*}\right)$ holds. Assume that $x \neq 0 . H(\nabla x)=H(\bigwedge\{b: b \in B(L), x \leq b\})=$ $\bigwedge\{H(b): b \in B(L), x \leq b\}$ and $\nabla H(x)=\bigwedge\left\{b^{\prime}: b^{\prime} \in B\left(L^{\prime}\right), H(x) \leq b^{\prime}\right\}$. Let us prove that $\{H(b): b \in B(L), x \leq b\}=\left\{b^{\prime}: b^{\prime} \in B\left(L^{\prime}\right), H(x) \leq b^{\prime}\right\}$, from where (*) follows.

Let $y \in\{H(b): b \in B(L), x \leq b\}$, so $y=H(b)$, where $b \in B(L), x \leq b$. Since $H$ is a lattice isomorphism and $b \in B(L)$, then $y=H(b) \in B\left(L^{\prime}\right)$ and $H(x) \leq H(b)=y$. Conversely, if $b^{\prime} \in B\left(L^{\prime}\right)$ and $H(x) \leq b^{\prime}$, since $H$ is surjective $b^{\prime}=H(b)$, for some $b \in B(L)$. We have thus that $H(x) \leq H(b)$, from where it follows that $x \leq b$.

Corollary 5.9.24. Every non trivial finite Łukasiewicz algebra is determined, up to isomorphisms, by its determinant system.

Recall the following definition and result (see [11], [16]) : If $K$ is a Kleene algebra, we say that the set $B(K)$ of boolean elements of $K$, which is a boolean algebra, is:

- relatively upward complete if it verifies: If $x \in K$ then there exists $\bigwedge\{b \in$ $B(K): x \leq b\}$ in $B(K)$ and $\nabla x=\bigwedge\{b \in B(K): x \leq b\}$.
- separating if it verifies: If $x, y \in K$ and $y \not \leq x$, then there exists $b \in B(K)$ such that $x \leq b$ and $y \not 又 b$, or there exists $b^{\prime} \in B(K)$ such that $b^{\prime} \leq y$ and $b^{\prime} \not \leq x$.

Theorem 5.9.25. If $K$ is a Kleene algebra such that the set $B(K)$ of its boolean elements is relatively upward complete and separating, then there exists a unique Eukasiewicz algebra structure one $K$, [11].

The operators $\nabla$ and $\Delta$ are defined by:

$$
\nabla x=\bigwedge\{b \in B(K): x \leq b\} ; \Delta x=\bigvee\{b \in B(K): b \leq x\}
$$

for all $x \in K$.
Lemma 5.9.26. If $K$ is a non trivial finite Kleene algebra and its determinant system $(\Pi(K), \psi)$ is isomorphic to the Kleene space $(X, \alpha)$ where $X=X_{1}+X_{2}$, (with $\alpha\left(X_{i}\right)=X_{i}, i=1,2$ ) and if $K_{i}, i=1,2$ is a Kleene algebra such that its determinant system $\left(\Pi\left(K_{i}\right), \psi_{i}\right)$ is isomorphic to $\left(X_{i}, \alpha\right), i=1,2$, then $K$ is isomorphic to $K_{1} \times K_{2}$.

Lemma 5.9.27. If $K_{1}, K_{2}$ are non trivial finite Kleene algebras, and $B\left(K_{1}\right)$, $B\left(K_{2}\right)$ are relatively upward complete and separating, then $K_{1} \times K_{2}$ is a Kleene algebra and $B\left(K_{1} \times K_{2}\right)$ is relatively upward complete.

Theorem 5.9.28. If $(X, \alpha)$ is a non trivial finite Kleene space such that $X=$ $\sum_{i=1}^{t} Y_{i}$, where

$$
Y_{i}= \begin{cases}\left\{y_{i}\right\}, \text { and } \alpha\left(y_{i}\right)=y_{i}, & \text { if } 1 \leq i \leq s \\ \left\{z_{i}, w_{i}\right\}, z_{i}<w_{i}, \alpha\left(z_{i}\right)=w_{i}, \text { and } \alpha\left(w_{i}\right)=z_{i}, & \text { if } s+1 \leq i \leq t\end{cases}
$$

then there exists a non trivial finite Łukasiewicz algebra $A$ such that its determinant system $(\Pi(A), \psi)$ is a Kleene space isomorphic to $(X, \alpha)$.

Proof. It is clear that $N[X]=2 t-s$.


Let $A_{i}, 1 \leq i \leq t$, be a Kleene algebra such that $\Pi\left(A_{i}\right)$ is isomorphic to $Y_{i}$, then we can let (see Remark 5.9.20):

$$
A_{i}= \begin{cases}\left\{0_{i}, 1_{i}\right\}, \sim 0_{i}=1_{i}, & \text { if } 1 \leq i \leq s, \\ \left\{0_{i}, c_{i}, 1_{i}\right\}, \sim 0_{i}=1_{i}, \sim c_{i}=c_{i}, & \text { if } s+1 \leq i \leq t\end{cases}
$$

Then,

$$
\Pi\left(A_{i}\right)= \begin{cases}\left\{1_{i}\right\}, & \text { if } 1 \leq i \leq s \\ \left\{c_{i}, 1_{i}\right\}, & \text { if } s+1 \leq i \leq t\end{cases}
$$

and if $h_{i}, 1 \leq i \leq t$ are isomorphisms from $Y_{i}$ to $\Pi\left(A_{i}\right)$ then

- $h_{i}\left(y_{i}\right)=1_{i}$, for $1 \leq i \leq s$,
- $h_{i}\left(z_{i}\right)=c_{i}$, for $s+1 \leq i \leq t$,
- $h_{i}\left(w_{i}\right)=1_{i}$, for $s+1 \leq i \leq t$.

We now let $A$ be the Kleene algebra $\prod_{i=1}^{t} A_{i}$.

$$
\text { Since } B\left(A_{i}\right)= \begin{cases}A_{i}, & \text { if } 1 \leq i \leq s \\ \left\{0_{i}, 1_{i}\right\}, & \text { if } s+1 \leq i \leq t\end{cases}
$$

and both are relatively upward complete and separating sets, then by Lemma 5.9.27, $B(A)$ is a relatively upward complete and separating set as well, so by Theorem 5.9.25, there is a unique Łukasiewicz algebra structure defined on $A$.

We prove now that $(X, \alpha)$ and $(\Pi(A), \psi)$ are isomorphic Kleene spaces. It is well known that $\Pi(A)=\left\{p^{(j)}\right\}_{j=1}^{2 t-s}$, where

$$
p^{(j)}=\left(p_{1}^{(j)}, \ldots, p_{s}^{(j)}, p_{s+1}^{(j)}, \ldots, p_{t}^{(j)}\right), 1 \leq j \leq 2 t-s .
$$

and $p_{i}^{(j)}$ is defined as follows:

- if $1 \leq j \leq s$, then

$$
p_{i}^{(j)}= \begin{cases}1_{i} & \text { if } i=j \\ 0_{i} & i \neq j,\end{cases}
$$

- if $s+1 \leq j \leq t$, then

$$
p_{i}^{(j)}= \begin{cases}c_{i} & \text { if } i=j \\ 0_{i} & i \neq j,\end{cases}
$$

- if $t+1 \leq j \leq 2 t-s$, then

$$
p_{i}^{(j)}= \begin{cases}1_{i} & \text { if } i=j-t+s \\ 0_{i} & \text { otherwise }\end{cases}
$$

Then $p^{(s+r)}<p^{(t+r)}$ for $1 \leq r \leq t-s$.

By (5.9.1) and Remark 5.9.22,
(6) $\psi\left(p^{(j)}\right)=p^{(j)}, 1 \leq j \leq s$,
(7) $\psi\left(p^{(j)}\right)=p^{(j+t-s)}, s+1 \leq j \leq t$, and
(8) $\psi\left(p^{(j)}\right)=p^{(j-t+s)}, t+1 \leq j \leq 2 t-s$.

If $x \in X$, we define $H: X \rightarrow \Pi(A)$ as follows:
(9) $H\left(y_{j}\right)=p^{(j)}$, for $1 \leq j \leq s$,
(10) $H\left(z_{j}\right)=p^{(j)}$, for $s+1 \leq j \leq t$, and
(11) $H\left(w_{j}\right)=p^{(j+t-s)}$, for $s+1 \leq j \leq t$.

It is easy to see that $H$ is an order isomorphism from $X$ to $\Pi(A)$.
By hypothesis, we have that
Furthermore $H(\alpha(x))=\psi(H(x))$. Indeed:

- If $1 \leq j \leq s$, then $H\left(\alpha\left(y_{j}\right) \stackrel{(1)}{=} H\left(y_{j}\right) \stackrel{(9)}{=} p^{(j)}\right.$ and $\psi\left(H\left(y_{j}\right)\right)=\psi\left(p^{(j)}\right) \stackrel{(6)}{=} p^{(j)}$,
- If $s+1 \leq j \leq t$, then $H\left(\alpha\left(z_{j}\right)\right) \stackrel{(2)}{=} H\left(w_{j}\right) \stackrel{(11)}{=} p^{(j+t-s)}$ and $\psi\left(H\left(z_{j}\right)\right)=$ $\psi\left(p^{(j)}\right) \stackrel{(8)}{=} p^{(j+t-s)}$,
- If $s+1 \leq j \leq s$, then $H\left(\alpha\left(w_{j}\right)\right) \stackrel{(3)}{=} H\left(z_{j}\right) \stackrel{(10)}{=} p^{(j)}$ and $\psi\left(H\left(w_{j}\right)\right)=$ $\psi\left(p^{(j+t-s)}\right) \stackrel{(7)}{=} p^{(j)}$.


## CHAPTER 6

## Geometric construction of free algebras

In the annual meeting of the U.M.A. of 1964, A. Monteiro and R. Cignoli [33] presented the following results. The details of this work have never been published before. The method used is similar to the one employed in 1961, for free De Morgan algebras, by O. Chateubriand and A. Monteiro, [10] (this work was developed during A. Monteiro's stay in the Universidad de Buenos Aires).

In 1979 R. Cignoli publishes an article [15] generalizing the results from [33].

### 6.1. Introduction

Let $T$ be a non-empty set and $\varphi$ an involution on $T$. For each $X \subseteq T$ put (see Example 1.8.1):

$$
\begin{equation*}
\sim X=\complement \varphi(X) \tag{6.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla X=X \cup \varphi(X) \tag{6.1.2}
\end{equation*}
$$

The operations defined above verify (see Example 1.8.1):

| St1) | $\nabla \emptyset=\emptyset$ | $;$ | St4 $)$ | $X \subseteq \nabla X$ |
| :--- | ---: | :--- | ---: | ---: |
| St5 $)$ | $\nabla(X \cap \nabla Y)=\nabla X \cap \nabla Y$ | $;$ | St9 $)$ | $\sim \sim X=X$ |
| St10 $)$ | $\sim(X \cap Y)=\sim X \cup \sim Y$ | $;$ | St11 $)$ | $\sim T=\emptyset$ |

It is easy to verify also that:
St12) $\quad \sim \emptyset=T \quad ; \quad$ St13 $) \sim(X \cup Y)=\sim X \cap \sim Y$
St14) $\quad \nabla T=T \quad ; \quad$ St15) $\quad \nabla(X \cup Y)=\nabla X \cup \nabla Y$
St16) $\sim X \cup \nabla X=T \quad ; \quad$ St17) $\sim X \cap \nabla X=\sim X \cap X$
By St9), St12) and St13) it follows that the system $\left(2^{T}, \cap, \cup, \sim, T\right)$ is a De Morgan algebra.

From St15) it follows that

$$
\text { St18) If } X \subseteq Y \text { then } \nabla X \subseteq \nabla Y \text {. }
$$

Then since $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$ by St18) it follows that

$$
\nabla(X \cap Y) \subseteq \nabla X \text { and } \nabla(X \cap Y) \subseteq \nabla Y
$$

therefore:
St19) $\nabla(X \cap Y) \subseteq \nabla X \cap \nabla Y$.
A. Monteiro proved (see Example 1.8.1) that the inclusion:

$$
\begin{equation*}
\nabla X \cap \nabla Y \subseteq \nabla(X \cap Y) \tag{6.1.15}
\end{equation*}
$$

holds if and only if $\varphi$ is the identity function on $T$. Then, the system $\left(2^{T}, \cap, \cup\right.$, $\sim, \nabla, T)$ is a Łukasiewicz algebra if and only if the involution $\varphi$ which defines $\sim$ and $\nabla$ through the formulas (6.1.1) and (6.1.2) is the identity function on $T$. In this case $\sim$ coincides with the complement (on $T$ ) and $\nabla$ is the identity operator on $2^{T}$, so it is a boolean algebra, and therefore a Łukasiewicz algebra. There can exist subalgebras $S$ of the De Morgan algebra $\left(2^{T}, \cap, \cup, \sim, T\right)$ such that the relation (6.1.15) holds for every pair of elements $X, Y \in S$, and in this case $S$ is a non trivial Łukasiewicz algebra, as we saw in Example 1.8.1.

Lemma 6.1.1. Let $T$ be a non-empty set, $\varphi$ an involution on $T$ and $\left\{G_{i}\right\}_{i \in I}$ a family of subsets of $T$. Let $\mathcal{L}$ be a subalgebra of the De Morgan algebra $\left(2^{T}, \cap, \cup, \sim\right.$ ,T) with the operations $\sim$ and $\nabla$ defined using the involution $\varphi$ and the formulas (6.1.1) and (6.1.2), and containing the sets $G_{i}$ for all $i \in I$.

Then $\mathcal{L}$ is a Łukasiewicz algebra if and only if for every $i, j \in I$ :

$$
\nabla\left(G_{i} \cap \sim G_{i}\right) \cap \nabla\left(G_{j} \cap \sim G_{j}\right) \subseteq \nabla\left(G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j}\right) .
$$

Proof. It is clear that the condition is necessary. We shall prove that it is sufficient. In order to do that, consider for each $i \in I$, the following sets:

$$
\begin{array}{lll}
G_{i}^{1}=G_{i} \cap \sim G_{i} & ; & G_{i}^{2}=\nabla\left(G_{i} \cap \sim G_{i}\right) \\
G_{i}^{3}=\sim \nabla \sim G_{i} & ; & G_{i}^{4}=\sim \nabla G_{i}
\end{array}
$$

Using (6.1.1) and (6.1.2), it is easy to see that:

$$
\text { (1) } \begin{aligned}
G_{i}^{1} & =G_{i} \cap \complement \varphi\left(G_{i}\right), \\
G_{i}^{2} & =\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right), \\
G_{i}^{3} & =G_{i} \cap \varphi\left(G_{i}\right), \\
G_{i}^{4} & =\complement \varphi\left(G_{i}\right) \cap С G_{i} .
\end{aligned}
$$

Now we prove that:

$$
\begin{array}{lll}
G_{i}=G_{i}^{1} \cup G_{i}^{3} & (2) & ; \\
\sim G_{i}=G_{i}^{1} \cup G_{i}^{4} \\
\sim G_{i}^{1} \cup G_{i}^{3} \cup G_{i}^{4} & (4) & ; \\
\sim G_{i}^{3}=G_{i}^{2} \cup G_{i}^{4} & (6) & ; \\
\nabla G_{i}^{1}=G_{i}^{2} \cup G_{i}^{4} \\
\nabla G_{i}^{3}=G_{i}^{3} & (8) & ; \\
\hline
\end{array}
$$

(2) $G_{i}^{1} \cup G_{i}^{3}=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(G_{i} \cap \varphi\left(G_{i}\right)\right)=G_{i} \cap\left(\complement \varphi\left(G_{i}\right) \cup \varphi\left(G_{i}\right)\right)=$ $G_{i} \cap T=G_{i}$,
(3) $G_{i}^{1} \cup G_{i}^{4}=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\complement \varphi\left(G_{i}\right) \cap \complement G_{i}\right)=\complement \varphi\left(G_{i}\right) \cap\left(G_{i} \cup \complement G_{i}\right)=$ $\complement_{\varphi}\left(G_{i}\right) \cap T=\complement \varphi\left(G_{i}\right)=\sim G_{i}$,
(4) $G_{i}^{1} \cup G_{i}^{3} \cup G_{i}^{4}=($ by $(21))=G_{i}^{3} \cup \sim G_{i}=\left(G_{i} \cap \varphi\left(G_{i}\right)\right) \cup \sim G_{i}=$
$\left(G_{i} \cup \sim G_{i}\right) \cap\left(\varphi\left(G_{i}\right) \cup \sim G_{i}\right)=\sim G_{i}^{1} \cap\left(\varphi\left(G_{i}\right) \cup C \varphi\left(G_{i}\right)\right)=\sim G_{i}^{1} \cap T=\sim G_{i}^{1}$.
(5) $G_{i}^{3} \cup G_{i}^{4}=\left(G_{i} \cap \varphi\left(G_{i}\right)\right) \cup\left(\complement \varphi\left(G_{i}\right) \cap \complement G_{i}\right)=\left(G_{i} \cup С \varphi\left(G_{i}\right)\right) \cap\left(\varphi\left(G_{i}\right) \cup \complement G_{i}\right)$. $\sim G_{i}^{2}=\complement \varphi\left(\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)\right)=\left(\complement \varphi\left(G_{i}\right) \cup G_{i}\right) \cap\left(\complement G_{i} \cup \varphi\left(G_{i}\right)\right)$.
(6) $G_{i}^{2} \cup G_{i}^{4}=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right) \cup\left(\complement \varphi\left(G_{i}\right) \cap \complement G_{i}\right)=$ $\left(\complement \varphi\left(G_{i}\right) \cap T\right) \cup\left(\varphi\left(G_{i}\right) \cap С G_{i}\right)=\complement \varphi\left(G_{i}\right) \cup \complement G_{i}$. $\sim G_{i}^{3}=\complement \varphi\left(G_{i} \cap \varphi\left(G_{i}\right)\right)=\complement \varphi\left(G_{i}\right) \cup \complement G_{i}$.
(7)
$G_{i}^{2} \cup G_{i}^{3}=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right) \cup\left(G_{i} \cap \varphi\left(G_{i}\right)\right)=$ $\left(G_{i} \cap\left(\complement \varphi\left(G_{i}\right) \cup \varphi\left(G_{i}\right)\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)=\left(G_{i} \cap T\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)=$ $G_{i} \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)=G_{i} \cup \varphi\left(G_{i}\right)$.
$\sim G_{i}^{4}=\complement \varphi\left(\complement \varphi\left(G_{i}\right) \cap \complement G_{i}\right)=G_{i} \cup \varphi\left(G_{i}\right)$.
(8) $\nabla G_{i}^{1}=G_{i}^{1} \cup \varphi\left(G_{i}^{1}\right)=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap С G_{i}\right)=\left(\right.$ by (1)) $=G_{i}^{2}$.
(9) $\nabla G_{i}^{2}=G_{i}^{2} \cup \varphi\left(G_{i}^{2}\right)=($ by (1) $)=G_{i}^{2} \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right) \cup\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right)=$ $G_{i}^{2} \cup G_{i}^{2}=G_{i}^{2}$.
(10) $\nabla G_{i}^{3}=G_{i}^{3} \cup \varphi\left(G_{i}^{3}\right)=\left(G_{i} \cap \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap G_{i}\right)=G_{i} \cap \varphi\left(G_{i}\right)=G_{i}^{3}$.
(11) $\nabla G_{i}^{4}=G_{i}^{4} \cup \varphi\left(G_{i}^{4}\right)=\left(\complement \varphi\left(G_{i}\right) \cap С G_{i}\right) \cup\left(С G_{i} \cap \complement \varphi\left(G_{i}\right)\right)=\complement G_{i} \cap \complement \varphi\left(G_{i}\right)=G_{i}^{4}$.

With the sets $G_{i}^{p}, i \in I, 1 \leq p \leq 4$ we define the family of subsets $C_{i j}$ of $T$, in the following manner:

$$
C_{i j}=\left(\varepsilon_{j}^{1} \cap G_{i}^{1}\right) \cup\left(\varepsilon_{j}^{2} \cap G_{i}^{2}\right) \cup\left(\varepsilon_{j}^{3} \cap G_{i}^{3}\right) \cup\left(\varepsilon_{j}^{4} \cap G_{i}^{4}\right)
$$

where $\varepsilon_{j}^{p}$ is either $\emptyset$ or $T$. Then for each $i \in I$ we have at most $2^{4}$ different sets $C_{i j}$. Moisil ([25], p. 441) proved that for each $i \in I$ there exist exactly 12 different sets $C_{i j}$, so $1 \leq j<2^{4}$.

Let $\mathcal{L}$ be the sublattice of the distributive lattice $\left(2^{T}, \cap, \cup\right)$ generated by the elements $C_{i j}$. We shall prove that the system $(\mathcal{L}, T, \sim, \nabla, \cap, \cup)$ is a Lukasiewicz algebra of subsets of $T$ (determined by $\varphi$ ) containing all the $G_{i}, i \in I$.
(i) $G_{i}^{p} \in \mathcal{L}$, for $1 \leq p \leq 4$.

Indeed:
(12) If $\varepsilon_{j}^{1}=T$ and $\varepsilon_{j}^{2}=\varepsilon_{j}^{3}=\varepsilon_{j}^{4}=\emptyset$ then $C_{i j}=G_{i}^{1} \in \mathcal{L}$.
(13) If $\varepsilon_{j}^{2}=T$ and $\varepsilon_{j}^{1}=\varepsilon_{j}^{3}=\varepsilon_{j}^{4}=\emptyset$ then $C_{i j}=G_{i}^{2} \in \mathcal{L}$.
(14) If $\varepsilon_{j}^{3}=T$ and $\varepsilon_{j}^{1}=\varepsilon_{j}^{2}=\varepsilon_{j}^{4}=\emptyset$ then $C_{i j}=G_{i}^{3} \in \mathcal{L}$.
(15) If $\varepsilon_{j}^{4}=T$ and $\varepsilon_{j}^{1}=\varepsilon_{j}^{2}=\varepsilon_{j}^{3}=\emptyset$ then $C_{i j}=G_{i}^{4} \in \mathcal{L}$.
(ii) $G_{i}, \sim G_{i} \in \mathcal{L}$.

By (12), (14) and (2) we have that $G_{i}=G_{i}^{1} \cup G_{i}^{3} \in \mathcal{L}$.
By (12), (15) and (3) we can also claim that $\sim G_{i}=G_{i}^{1} \cup G_{i}^{4} \in \mathcal{L}$.
(iii) $\sim G_{i}^{p} \in \mathcal{L}$, for $1 \leq p \leq 4$.

This is an immediate consequence of (i), (4), (5), (6) and (7).
(iv) $\emptyset, T \in \mathcal{L}$.

If $\varepsilon_{j}^{1}=\varepsilon_{j}^{2}=\varepsilon_{j}^{3}=\varepsilon_{j}^{4}=\emptyset$ then $\emptyset=C_{i j} \in \mathcal{L}$.
By (8) $\nabla G_{i}^{1}=G_{i}^{2}$, so by St16) $T=\nabla G_{i}^{1} \cup \sim G_{i}^{1}=G_{i}^{2} \cup \sim G_{i}^{1}$ and by
(i) and (iii), $G_{i}^{2} \cup \sim G_{i}^{1} \in \mathcal{L}$, this is $T \in \mathcal{L}$.
(v) $\sim C_{i j} \in \mathcal{L}$.

Since $C_{i j}=\bigcup_{p=1}^{4}\left(\varepsilon_{j}^{p} \cap G_{i}^{p}\right)$ from St10) and St13) it follows that:

$$
\begin{equation*}
\sim C_{i j}=\bigcap_{p=1}^{4}\left(\sim \varepsilon_{j}^{p} \cup \sim G_{i}^{p}\right) \tag{16}
\end{equation*}
$$

By (iii), we know that $\sim G_{i}^{p} \in \mathcal{L}$, for $1 \leq p \leq 4$, then for each $i \in I$ and each $p, 1 \leq p \leq 4$ there exists an index $j_{p}$ such that:

$$
\sim G_{i}^{p}=C_{i j_{p}}
$$

Therefore, by (16) we have:

$$
\begin{equation*}
\sim C_{i j}=\bigcap_{p=1}^{4}\left(\sim \varepsilon_{j}^{p} \cup C_{i j_{p}}\right) \tag{17}
\end{equation*}
$$

From St11), St12) and the definition of $\varepsilon_{j}^{p}$, we have that $\sim \varepsilon_{j}^{p} \cup C_{i j_{p}}$ is equal to $T$ or $C_{i j_{p}}$, and since $T, C_{i j_{p}} \in \mathcal{L}$ from (17) it follows that $\sim C_{i j}$ is the intersection of a finite number of elements of $\mathcal{L}$, so $\sim C_{i j} \in \mathcal{L}$.
(vi) If $X \in \mathcal{L}$ then $\sim X \in \mathcal{L}$.

If $X \in\{\emptyset, T\}$ then by St11) and St12) $\sim X \in\{\emptyset, T\}$.
It is well known (see for instance [8]) that every $X \in \mathcal{L} \backslash\{\emptyset, T\}$ is of the form:

$$
X=\bigcup_{r=1}^{m} \bigcap_{s=1}^{n_{r}} C_{i(r, s) j(r, s)}
$$

so, by St 10 ) and St 13 ) we have that:

$$
\sim X=\bigcap_{r=1}^{m} \bigcup_{s=1}^{n_{r}} \sim C_{i(r, s) j(r, s)}
$$

from where it follows using (v) that $\sim X \in \mathcal{L}$.
(vii) The system $(\mathcal{L}, T, \cap, \cup, \sim)$ is a De Morgan algebra of subsets of $T$.

By construction $(\mathcal{L}, \cap, \cup)$ is a distributive lattice of subsets of $T$ and by $(\mathrm{v}) \mathcal{L}$ is closed under the operation $\sim$, so by (6.1.1), $T \in \mathcal{L}$ and since St9) and St13) hold, (vii) follows.
(viii) $\nabla C_{i j} \in \mathcal{L}$.

Since $C_{i j}=\bigcup_{p=1}^{4}\left(\varepsilon_{j}^{p} \cap G_{i}^{p}\right)$, by $\left.\operatorname{St} 15\right)$ we have that

$$
\begin{equation*}
\nabla C_{i j}=\bigcup_{p=1}^{4} \nabla\left(\varepsilon_{j}^{p} \cap G_{i}^{p}\right) \tag{18}
\end{equation*}
$$

By St1) and St14) $\varepsilon_{j}^{p}=\nabla \varepsilon_{j}^{p}$ so by St5) we have that:

$$
\begin{equation*}
\nabla\left(\varepsilon_{j}^{p} \cap G_{i}^{p}\right)=\nabla \varepsilon_{j}^{p} \cap \nabla G_{i}^{p}=\varepsilon_{j}^{p} \cap \nabla G_{i}^{p} \tag{19}
\end{equation*}
$$

Then from (18) and (19) we have that:

$$
\nabla C_{i j}=\left(\varepsilon_{j}^{1} \cap \nabla G_{i}^{1}\right) \cup\left(\varepsilon_{j}^{2} \cap \nabla G_{i}^{2}\right) \cup\left(\varepsilon_{j}^{3} \cap \nabla G_{i}^{3}\right) \cup\left(\varepsilon_{j}^{4} \cap \nabla G_{i}^{4}\right)
$$

and by (8) to (11) it follows that:

$$
\nabla C_{i j}=\left(\varepsilon_{j}^{1} \cap G_{i}^{2}\right) \cup\left(\varepsilon_{j}^{2} \cap G_{i}^{2}\right) \cup\left(\varepsilon_{j}^{3} \cap G_{i}^{3}\right) \cup\left(\varepsilon_{j}^{4} \cap G_{i}^{4}\right)
$$

this is

$$
\nabla C_{i j}=\left(\emptyset \cap G_{i}^{1}\right) \cup\left(\left(\varepsilon_{j}^{1} \cup \varepsilon_{j}^{2}\right) \cap G_{i}^{2}\right) \cup\left(\varepsilon_{j}^{3} \cap G_{i}^{3}\right) \cup\left(\varepsilon_{j}^{4} \cap G_{i}^{4}\right)
$$

and therefore $\nabla C_{i j} \in \mathcal{L}$.
(ix) $\nabla\left(G_{i}^{p} \cap G_{j}^{q}\right)=\nabla G_{i}^{p} \cap \nabla G_{j}^{q}, i, j \in I, 1 \leq p, q \leq 4$.

If $2 \leq q \leq 4$, then by (9) to (11) we have that $\nabla G_{i}^{q}=G_{i}^{q}$ and therefore using St5) we have

$$
\begin{equation*}
\nabla\left(G_{i}^{p} \cap G_{j}^{q}\right)=\nabla\left(G_{i}^{p} \cap \nabla G_{j}^{q}\right)=\nabla G_{i}^{p} \cap \nabla G_{j}^{q}, 2 \leq p, q \leq 4 \tag{20}
\end{equation*}
$$

Interchanging $G_{i}^{p}$ and $G_{j}^{q}$ we have that (20) holds for all $i, j \in I$ and $p, q$ not simultaneously equal to 1 .

By St19) we know that:

$$
\nabla\left(G_{i}^{1} \cap G_{j}^{1}\right) \subseteq \nabla G_{i}^{1} \cap \nabla G_{j}^{1}
$$

On the other hand, using the hypothesis of the lemma

$$
\begin{gathered}
\nabla G_{i}^{1} \cap \nabla G_{j}^{1}=\nabla\left(G_{i} \cap \sim G_{i}\right) \cap \nabla\left(G_{j} \cap \sim G_{j}\right) \subseteq \\
\nabla\left(G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j}\right)=\nabla\left(G_{i}^{1} \cap \sim G_{j}^{1}\right),
\end{gathered}
$$

so (20) also holds for $p=q=1$.
(x) $\nabla\left(C_{i j} \cap C_{k l}\right)=\nabla C_{i j} \cap \nabla C_{k l}$.

Let $C_{i j}=\bigcup_{p=1}^{4}\left(\varepsilon_{j}^{p} \cap G_{i}^{p}\right)$ and $C_{k l}=\bigcup_{q=1}^{4}\left(\varepsilon_{l}^{q} \cap G_{k}^{q}\right)$ then we have

$$
C_{i j} \cap C_{k l}=\bigcup_{p, q=1}^{4}\left(\varepsilon_{j l}^{p q} \cap G_{i}^{p} \cap G_{k}^{q}\right) \text {, where } \varepsilon_{j l}^{p q}=\varepsilon_{j}^{p} \cap \varepsilon_{l}^{q} .
$$

Since $\nabla \varepsilon_{j l}^{p q}=\varepsilon_{j l}^{p q}$ then using St5), St15) and (ix) we have

$$
\begin{gathered}
\nabla\left(C_{i j} \cap C_{k l}\right)=\bigcup_{p, q=1}^{4}\left(\varepsilon_{j l}^{p q} \cap \nabla\left(G_{i}^{p} \cap G_{k}^{q}\right)\right)=\bigcup_{p, q=1}^{4}\left(\varepsilon_{j l}^{p q} \cap \nabla G_{i}^{p} \cap \nabla G_{k}^{q}\right)= \\
\bigcup_{p=1}^{4}\left(\varepsilon_{j}^{p} \cap \nabla G_{i}^{p}\right) \cap \bigcup_{q=1}^{4}\left(\varepsilon_{l}^{q} \cap \nabla G_{k}^{q}\right)=\nabla C_{i j} \cap \nabla C_{k l} .
\end{gathered}
$$

(xi) If $X \in \mathcal{L}$ then $\nabla X \in \mathcal{L}$.

If $X \in\{\emptyset, T\}$ then by St1) and St14) we have that $\nabla X \in\{\emptyset, T\}$. If $X \in \mathcal{L} \backslash\{\emptyset, T\}$ then $X=\bigcup_{r=1}^{m} \bigcap_{s=1}^{n_{r}} C_{i(r, s) j(r, s)}$ so by St15) and (x),

$$
\nabla X=\bigcup_{r=1}^{m} \bigcap_{s=1}^{n_{r}} \nabla C_{i(r, s) j(r, s)}
$$

then using (viii) we have $\nabla X \in \mathcal{L}$.
(xii) The system $(\mathcal{L}, T, \sim, \nabla, \cap, \cup)$ is a Eukasiewicz algebra.

By (vii) we have that the system $(\mathcal{L}, T, \sim, \cap, \cup)$ is a De Morgan algebra and by (xi) $\mathcal{L}$ is closed under the operation $\nabla$. Axioms L6) and L7) are a consequence of St5) and St16).

To prove L8) we proceed as follows: if $X, Y \in \mathcal{L}$, suppose first that $X \in\{\emptyset, T\}$. Then L8) follows immediately from St1) and St14).

If $X, Y \in \mathcal{L} \backslash\{\emptyset, T\}$, then we proceed as in the proof of part (xi), using the identity we proved in part (x) for the sets $C_{i j}$.
Items (ii) and (xii) prove the lemma.
Remark 6.1.2. We shall prove that in the setting of the previous lemma, we also have that $\mathcal{L}=L S(\mathcal{G})$.

If $\mathcal{L}^{\prime}$ is a Eukasiewicz algebra of subsets of $T$ determined by $\varphi$ such that (1) $G_{i} \in \mathcal{L}^{\prime}$ for all $i \in I$, then (2) $\mathcal{L} \subseteq \mathcal{L}^{\prime}$. Indeed, by (1) it follows that $G_{i}^{p} \in \mathcal{L}^{\prime}$, $1 \leq p \leq 4$ and therefore (3) $C_{i j} \in \mathcal{L}^{\prime}$. Thus if $X \in \mathcal{L}$ and $X \in\{\emptyset, T\}$ then $X \in \mathcal{L}^{\prime}$. If $X \in \mathcal{L} \backslash\{\emptyset, T\}$, we have that (4) $X=\bigcup_{r=1}^{m} \bigcap_{s=1}^{n_{r}} C_{i(r, s) j(r, s)}$. From (3) and (4) it follows that $X \in \mathcal{L}^{\prime}$, which proves (2). So $\mathcal{L}$ is the least subalgebra containing $\mathcal{G}=\left\{G_{i}\right\}_{i \in I}$ and therefore $\mathcal{L}=\operatorname{LS}(\mathcal{G})$.

### 6.2. Geometric construction of the free Lukasiewicz algebras

Given the poset $D=\{0,1\}$, where $0<1$, let $B=\{0,1\} \times\{0,1\}$, [10], so the poset $B$ has the following diagram:


Let $\psi: B \rightarrow B$ be defined by the following table:

| $x$ | $p_{0}$ | $p_{1}$ | $p_{2}$ | $p_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\psi(x)$ | $p_{3}$ | $p_{1}$ | $p_{2}$ | $p_{0}$ |

Observe that if $b=(x, y) \in B$ then $\psi(b)=\psi((x, y))=(1-y, 1-x)$.
Let $I$ be a set of cardinality $\mathbf{c}(\mathbf{c} \neq 0)$ and consider the set $E=\prod_{i \in I} B_{i}$, where $B_{i}=B$ for all $i \in I$.

Let $E^{\prime}$ be the set of all the elements $\left(x_{i}\right)_{i \in I} \in E$ that do not have simultaneously coordinates with the values $p_{0}$ and $p_{3}$.

If $\left(x_{i}\right)_{i \in I} \in E^{\prime}$ we define a function $\varphi: E^{\prime} \rightarrow E^{\prime}$ as follows:

$$
\varphi(x)=\left(\psi\left(x_{i}\right)\right)_{i \in I},
$$

where $\psi$ is the involution on $B$ indicated before. Clearly $\varphi(x) \in E^{\prime}$ and $\varphi$ is an involution on $E^{\prime}$. Then by the previous section, the formulas (6.1.1) and (6.1.2) let us define the operations $\sim X$ and $\nabla X$ for every subset $X$ of $E^{\prime}$.

For each $i \in I$, let

$$
\begin{equation*}
G_{i}=\left\{x=\left(x_{j}\right)_{j \in I} \in E^{\prime}: x_{i} \in\left\{p_{2}, p_{3}\right\}\right\}, \tag{6.2.1}
\end{equation*}
$$

and $\mathcal{G}=\left\{G_{i}\right\}_{i \in I}$.
Consider the following element of $E^{\prime}: e=\left(e_{i}\right)_{i \in I}$ where $e_{i}=p_{3}$ for all $i \in I$, so $e \in G_{i}$ for all $i \in I$, and therefore all the sets $G_{i}$ are non-empty. Analogously, the element $f=\left(f_{i}\right)_{i \in I}$ where $f_{i}=p_{2}$ for all $i \in I$, of $E^{\prime}$ belongs to every $G_{i}, i \in I$.

Let $x^{(j)}=\left(x_{i}^{(j)}\right)_{i \in I}$ be such that $x_{j}^{(j)}=p_{1}$ and $x_{i}^{(j)}=p_{3}$ for all $i \neq j$, so $x^{(j)} \notin G_{j}$ and therefore $x^{(j)} \in G_{i}$ for all $i \neq j$. This proves that $\mathcal{G}$ and $I$ have the same cardinality.

Remark 6.2.1. From the definition of $\varphi$ we have that $x \in G_{i}$, this is $x_{i} \in$ $\left\{p_{2}, p_{3}\right\}$ if and only if $\psi\left(x_{i}\right) \in\left\{\psi\left(p_{2}\right), \psi\left(p_{3}\right)\right\}=\left\{p_{2}, p_{0}\right\}$, so:
$\varphi\left(G_{i}\right)=\left\{x \in E^{\prime}: x_{i} \in\left\{p_{2}, p_{0}\right\}\right\}$ and $\sim G_{i}=\complement \varphi\left(G_{i}\right)=\left\{x \in E^{\prime}: x_{i} \in\right.$ $\left.\left\{p_{1}, p_{3}\right\}\right\}$.

We define, as in Lemma 6.1.1, $G_{i}^{2}=\nabla\left(G_{i} \cap \sim G_{i}\right)$. We also saw in that lemma that (1) $G_{i}^{2}=\left(G_{i} \cap \complement \varphi\left(G_{i}\right)\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)$. Let $x \in X=\nabla\left(G_{i} \cap \sim\right.$ $\left.G_{i}\right) \cap \nabla\left(G_{j} \cap \sim G_{j}\right)=G_{i}^{2} \cap G_{j}^{2}$ so by (1) we have that:
(2) $x \in\left(G_{i} \cap \sim G_{i}\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i}\right)$ and (3) $x \in\left(G_{j} \cap \sim G_{j}\right) \cup\left(\varphi\left(G_{j}\right) \cap \complement G_{j}\right)$.

From (2) it follows that (4) $x \in G_{i} \cap \sim G_{i}$ or (5) $x \in \varphi\left(G_{i}\right) \cap \complement G_{i}$.
From (4) it follows that $x_{i} \in\left\{p_{2}, p_{3}\right\}$ and by Remark 6.2.1 $x_{i} \in\left\{p_{1}, p_{3}\right\}$, so $x_{i}=p_{3}$.

From (5) it follows by Remark 6.2 .1 that $x_{i} \in\left\{p_{2}, p_{0}\right\}$ and since $x \in \mathbb{C} G_{i}$ we have that $x_{i} \in\left\{p_{0}, p_{1}\right\}$, so $x_{i}=p_{0}$.

Analogously from (3) it follows that $x_{j}=p_{3}$ or $x_{j}=p_{0}$.
Therefore if $x \in X$ we have that (6) $x_{i}=p_{3}$ or (7) $x_{i}=p_{0}$ and (8) $x_{j}=p_{3}$ or (9) $x_{j}=p_{0}$. Since $x \in E^{\prime}$, (6) and (9) cannot hold simultaneously, and the same is true for (7) and (8).

Then if $x \in X$ and (6) and (8) hold, then $x_{i}=x_{j}=p_{3}$, and if (7) and (9) hold, then $x_{i}=x_{j}=p_{0}$.

Therefore if $x \in X$ we have that $x_{i}=x_{j}=p_{0}$ or $x_{i}=x_{j}=p_{3}$.
Now let

$$
\begin{gathered}
Y=\nabla\left(G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j}\right)= \\
=\left(G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j}\right) \cup\left(\varphi\left(G_{i}\right) \cap \complement G_{i} \cap \varphi\left(G_{j}\right) \cap \complement G_{j}\right)
\end{gathered}
$$

then $y \in Y$ is equivalent to

$$
y \in G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j} \text { or } y \in \varphi\left(G_{i}\right) \cap \complement G_{i} \cap \varphi\left(G_{j}\right) \cap \complement G_{j}
$$

and by Remark 6.2.1, this is equivalent to:

$$
y_{i} \in\left\{p_{2}, p_{3}\right\} \cap\left\{p_{1}, p_{3}\right\} \text { and } y_{j} \in\left\{p_{2}, p_{3}\right\} \cap\left\{p_{1}, p_{3}\right\}
$$

or

$$
y_{i} \in\left\{p_{2}, p_{0}\right\} \cap\left\{p_{0}, p_{3}\right\} \text { and } y_{j} \in\left\{p_{2}, p_{0}\right\} \cap\left\{p_{0}, p_{3}\right\}
$$

this is $y_{i}=y_{j}=p_{3}$ or $y_{i}=y_{j}=p_{0}$, so

$$
\nabla\left(G_{i} \cap \sim G_{i}\right) \cap \nabla\left(G_{j} \cap \sim G_{j}\right) \subseteq \nabla\left(G_{i} \cap \sim G_{i} \cap G_{j} \cap \sim G_{j}\right) .
$$

Then, by Lemma 6.1.1, there exists a Łukasiewicz algebra $\mathcal{L}$ of subsets of $E^{\prime}$, determined by $\varphi$, which contains all the sets $G_{i}, i \in I$.

By Remark 6.1.2, $\mathcal{L}=L S(\mathcal{G})$, where $\mathcal{G}=\left\{G_{i}\right\}_{i \in I}$.
Theorem 6.2.2. $\mathcal{L}$ is a Lukasiewicz algebra with a set of free generators of cardinality $\mathbf{c}$.

Proof. We need to prove that given an arbitrary Łukasiewicz algebra $A$ and a function $f: \mathcal{G} \rightarrow A, f$ can be extended to a homomorphism $h: \mathcal{L} \rightarrow A$.

If $A$ has a single element, $A=\{0\}$, then $f\left(G_{i}\right)=0$ for all $i \in I$ and therefore the function $h(X)=0$ for all $X \in \mathcal{L}$ is a homomorphism extending $f$.

If $A$ has more than one element, we know (see sections 5.6 and 5.9) that $A$ is isomorphic to a Łukasiewicz algebra $\mathcal{A}$, which is a subalgebra of subsets of a certain set $T$, determined by an involution $\alpha$ on $T$, where $\approx X=\mathrm{C}_{T} \alpha(X)$ and $\nabla X=X \cup \alpha(X)$, for all $X \subseteq T$.

Let $f: \mathcal{G} \rightarrow \mathcal{A}$. Then for each $i \in I$ we write $f\left(G_{i}\right)=H_{i}$, where $H_{i} \in \mathcal{A}$ this is $H_{i} \subseteq T$.

Given $X \subseteq T$, let $K_{X}: T \rightarrow D=\{0,1\}$ be the function defined by:

$$
K_{X}(t)= \begin{cases}1, & \text { if } t \in X \\ 0, & \text { if } t \notin X\end{cases}
$$

Notice that (1) ${\underline{C_{C_{T} X}}}(t)=1-K_{X}(t)$.
Consider now the function $K_{i}: T \rightarrow B$ defined by:

$$
K_{i}(t)=\left(K_{H_{i}}(t), K_{\approx H_{i}}(t)\right),
$$

so by the definition of $\approx$ and (1) we have that
(2) $\quad K_{i}(t)=\left(K_{H_{i}}(t), K_{\mathbb{C}_{T} \alpha\left(H_{i}\right)}(t)\right)=\left(K_{H_{i}}(t), 1-K_{\alpha\left(H_{i}\right)}(t)\right)$.

Let us prove that (3) $K_{H_{i}}(\alpha(t))=K_{\alpha\left(H_{i}\right)}(t)$.
Indeed, $K_{H_{i}}(\alpha(t))=1 \Longleftrightarrow \alpha(t) \in H_{i} \Longleftrightarrow t=\alpha(\alpha(t)) \in \alpha\left(H_{i}\right) \Longleftrightarrow$ $K_{\alpha\left(H_{i}\right)}(t)=1$.

From (3) it follows that replacing $t$ by $\alpha(t)$ we get: (4) $\underline{K}_{H_{i}}(t)=K_{\alpha\left(H_{i}\right)}(\alpha(t))$.
As in [10] let us define $K: T \rightarrow E^{\prime}$ by:

$$
K(t)=\left(K_{i}(t)\right)_{i \in I} .
$$

Notice that:

$$
\begin{gathered}
\left(K_{i}(t)\right)_{i \in I}=K(t) \in G_{i} \Longleftrightarrow K_{i}(t) \in\{(1,0),(1,1)\} \Longleftrightarrow \\
\left(K_{H_{i}}(t), 1-K_{\alpha\left(H_{i}\right)}(t)\right)=(1,0) \text { or }\left(K_{H_{i}}(t), 1-K_{\alpha\left(H_{i}\right)}(t)\right)=(1,1) .
\end{gathered}
$$

Then:

$$
K_{H_{i}}(t)=1 \text { and } 1-K_{\alpha\left(H_{i}\right)}(t)=0
$$

or

$$
K_{H_{i}}(t)=1 \text { and } 1-K_{\alpha\left(H_{i}\right)}(t)=1
$$

and therefore

$$
\text { (5) } \quad K(t) \in G_{i} \Longleftrightarrow K_{H_{i}}(t)=1
$$

It is clear that $K$ is a function from $T$ to $E$. To prove that $K$ is a function from $T$ to $E^{\prime}$ we need to prove that for each $t \in T$, the element $K(t)=\left(K_{i}(t)\right)_{i \in I}$ does not have coordinates with values $p_{0}$ and $p_{3}$ simultaneously. Assume that there exists $t \in T$ and two elements $i, j \in T$ such that $K_{i}(t)=p_{0}$ and $K_{j}(t)=p_{3}$, then by the definition of the functions $K_{i}$ we have that:
(6) $\quad t \notin H_{i}$ and $t \notin \alpha\left(H_{i}\right)$
(7) $\quad t \in H_{j}$ and $t \notin \alpha\left(H_{j}\right)$.

But the conditions (6) and (7) are contradictory. Indeed, from (7) it follows that $t \in H_{j}$ and $t \in \approx H_{j}$, so $t \in H_{j} \cap \approx H_{j}$ and since every Łukasiewicz algebra is a Kleene algebra, we have that $H_{j} \cap \approx H_{j} \subseteq H_{i} \cup \approx H_{i}$ and therefore $t \in H_{i} \cup \approx H_{i}$, which contradicts (6).

Since $K$ is a function from $T$ to $E^{\prime}$, if we define $h: 2^{E^{\prime}} \rightarrow 2^{T}$ by $h(X)=$ $K^{-1}(X)$ for all $X \subseteq E^{\prime}$, then for all $X, Y \subseteq E^{\prime}$ the following hold:
(8) $\quad h(X \cap Y)=h(X) \cap h(Y)$,
(9) $\quad h(X \cup Y)=h(X) \cup h(Y)$,
(10) $h\left(E^{\prime}\right)=T$,

$$
\begin{equation*}
h\left(\complement_{E^{\prime}} X\right)=K^{-1}\left(\complement_{E^{\prime}} X\right)=\complement_{T} K^{-1}(X)=\complement_{T} h(X) . \tag{11}
\end{equation*}
$$

Thus $h$ is a De Morgan homomorphism from $2^{E^{\prime}}$ to $2^{T}$ if and only if

$$
h(\sim X)=\approx h(X) \text {, for every } X \subseteq E^{\prime} .
$$

This is, if and only if, for every $X \subseteq E^{\prime}$,

$$
h\left(\complement_{E^{\prime}} \varphi(X)\right)=K^{-1}\left(\complement_{E^{\prime}} \varphi(X)\right)=\complement_{T} \alpha\left(K^{-1}(X)\right)=\complement_{T} \alpha(h(X)),
$$

so by (11) this is equivalent to prove that

$$
\complement_{T} K^{-1}(\varphi(X))=\complement_{T} \alpha\left(K^{-1}(X)\right), \text { for every } X \subseteq E^{\prime}
$$

this is
(12) $\quad K^{-1}(\varphi(X))=\alpha\left(K^{-1}(X)\right)$, for every $X \subseteq E^{\prime}$.

Let us prove now that (12) holds. Indeed $t \in K^{-1}(\varphi(X)) \Longleftrightarrow K(t) \in$ $\varphi(X) \Longleftrightarrow(13) \varphi(K(t)) \in \varphi(\varphi(X))=X$. But since $\varphi(K(t))=\varphi\left(\left(K_{i}(t)\right)_{i \in I}\right)=$ $\left(\psi\left(K_{i}(t)\right)\right)_{i \in I}$ then (13) is equivalent to (14) $\left(\psi\left(K_{i}(t)\right)\right)_{i \in I} \in X$.

As by (2) $K_{i}(t)=\left(K_{H_{i}}(t), 1-K_{\alpha\left(H_{i}\right)}(t)\right)$, then

$$
\psi\left(K_{i}(t)\right)=\left(1-\left(1-K_{\alpha\left(H_{i}\right)}(t)\right), 1-K_{H_{i}}(t)\right)=\left(K_{\alpha\left(H_{i}\right)}(t), 1-K_{H_{i}}(t)\right)
$$

and therefore using (3), (4) and (2) we have that

$$
\psi\left(K_{i}(t)\right)=\left(K_{H_{i}}(\alpha(t)), 1-K_{\alpha\left(H_{i}\right)}(\alpha(t))\right)=K_{i}(\alpha(t)) .
$$

So (14) is equivalent to $K(\alpha(t))=\left(K_{i}(\alpha(t))\right)_{i \in I} \in X$ which in turn is equivalent to $\alpha(t) \in K^{-1}(X)$ this is $t \in \alpha\left(K^{-1}(X)\right)$.

We have proved (12), which gives us

$$
\begin{equation*}
h(\varphi(X))=\alpha(h(X)), \text { for every } X \subseteq E^{\prime} . \tag{15}
\end{equation*}
$$

From (11) and (15) we deduce

$$
\begin{equation*}
h(\sim X)=h\left(\complement_{E^{\prime}} \varphi(X)\right)=\complement_{T} h(\varphi(X))=\complement_{T} \alpha(h(X))=\approx h(X) . \tag{16}
\end{equation*}
$$

Thus we have proved that (i) $h$ is a De Morgan homomorphism from $2^{E^{\prime}}$ to $2^{T}$.
Furthermore, from the definition of $\nabla,(9),(15)$ and the definition of $\nabla$ we have that:

$$
\begin{equation*}
h(\nabla X)=h(X \cup \varphi(X))=h(X) \cup h(\varphi(X))=h(X) \cup \alpha(h(X))=\nabla h(X) . \tag{17}
\end{equation*}
$$

From (8), (9), (10), (16) and (17) it follows that:
(ii) $h$ is a homomorphism from $\mathcal{L}$ to $\mathcal{A}$.

Let us prove now that (iii) $h$ extends $f$, this is, that

$$
K^{-1}\left(G_{i}\right)=h\left(G_{i}\right)=f\left(G_{i}\right)=H_{i}, \text { for every } G_{i} \in \mathcal{G}
$$

Indeed $t \in H_{i} \Longleftrightarrow K_{H_{i}}=1$ so by (5) this is equivalent to $K(t) \in G_{i}$, which is equivalent to $t \in K^{-1}\left(G_{i}\right)=h\left(G_{i}\right)$.

Finally, let us prove that (iv) $h(\mathcal{L}) \subseteq \mathcal{A}$. By (ii), $h(\mathcal{L})$ is a subalgebra of the algebra $2^{T}$ and since $L S(\mathcal{G})=\mathcal{L}$, then $h(\mathcal{G})$ generates $h(\mathcal{L})$, this is $L S(h(\mathcal{G}))=$ $h(\mathcal{L})$. Since $h\left(G_{i}\right)=f\left(G_{i}\right)=H_{i} \in \mathcal{A}$, for all $i \in I$ then $h(\mathcal{G}) \subseteq \mathcal{A}$ so $h(\mathcal{L})=$ $L S(\mathcal{G}) \subseteq \mathcal{A}$, which concludes the proof.

## Bibliography

[1] Manuel Abad and Aldo Figallo. Characterization of three-valued Łukasiewicz algebras. Rep. Math. Logic, 18:47-59, 1984.
[2] Manuel Abad and Aldo Figallo. On Eukasiewicz homomorphisms. Univ. Nac. de San Juan, San Juan, Argentina, 1992.
[3] Manuel Abad and Luiz Monteiro. Number of epimorphisms between finite symmetric Boolean algebras. Rep. Math. Logic, 10:3-7 (1979), 1978.
[4] Manuel Abad and Luiz Monteiro. Monadic symmetric Boolean algebras, volume 37 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1989.
[5] Manuel Abad, Luiz Monteiro, Sonia Savini, and Julio Sewald. Subalgebras of a finite threevalued Łukasiewicz algebra. In Proceedings of the IX Latin American Symposium on Mathematical Logic, Part 1 (Bahía Blanca, 1992), volume 38 of Notas de Lógica Matemática, pages 181-190. Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 1993.
[6] Andrzej Białynicki-Birula. Remarks on quasi-Boolean algebras. Bull. Acad. Polon. Sci. Cl. III., 5:615-619, LII-LIII, 1957.
[7] Andrzej Bialynicki-Birula and Helena Rasiowa. On the representation of quasi-Boolean algebras. Bull. Acad. Polon. Sci. Cl. III, 5:259-261, XXII, 1957.
[8] Garrett Birkhoff. Lattice theory, volume 25 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, R.I., third edition, 1979.
[9] V. Boicescu, A. Filipoiu, G. Georgescu, and S. Rudeanu. Eukasiewicz-Moisil algebras, volume 49 of Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1991.
[10] Osvaldo Chateaubriand and António A. Monteiro. Les algèbres de De Morgan libres, volume 26 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1969.
[11] Roberto Cignoli. Boolean elements in Łukasiewicz algebras. I. Proc. Japan Acad., 41:670675, 1965.
[12] Roberto Cignoli. Álgebras de Moisil de orden n. PhD thesis, Universidad Nacional del Sur,, 1969.
[13] Roberto Cignoli. Moisil algebras, volume 27 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1970.
[14] Roberto Cignoli. Injective De Morgan and Kleene algebras. Proc. Amer. Math. Soc., 47:269278, 1975.
[15] Roberto Cignoli. Coproducts in the categories of Kleene and three-valued Łukasiewicz algebras. Studia Logica, 38(3):237-245, 1979.
[16] Roberto Cignoli and António A. Monteiro. Boolean elements in Lukasiewicz algebras. II. Proc. Japan Acad., 41:676-680, 1965.
[17] Díaz D. and Figallo A. Dos conjuntos de axiomas para las álgebras de Łukasiewicz trivalentes, volume 3 of Cuadernos del Instituto de Matemática Serie A. Univ. Nac. de San Juan, 1986.
[18] A. Figallo. $I_{n+1}$-álgebras con operaciones adicionales. PhD thesis, Universidad Nacional del Sur, Bahía Blanca, 1989.
[19] A. Figallo and J. Tolosa. Álgebras de Eukasiewicz trivalentes. Univ. Nac. de San Juan, 1984.
[20] Aldo Figallo and Alicia Ziliani. On the propositional system $\mathcal{A}$ of Sobociński. Portugal. Math., 49(1):11-22, 1992.
[21] Paul R. Halmos. Algebraic logic. I. Monadic Boolean algebras. Compositio Math., 12:217249, 1956.
[22] Paul R. Halmos. Algebraic logic. Chelsea Publishing Co., New York, 1962.
[23] Luisa Iturrioz. Algèbres de Heyting trivalentes involutives, volume 31 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 1974. Thèse présentée à l'Universidad Nacional del Sur, Bahía Blanca, 1971.
[24] M.I. Loureiro. Algebras modais tetravalentes. PhD thesis, Faculdade de Ciências de Lisboa, 1983.
[25] Gr. C. Moisil. Recherches sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy. Sect. I., 26:431-466, 1940.
[26] Gr. C. Moisil. Notes sur les logiques non-chrysippiennes. Ann. Sci. Univ. Jassy. Sect. I., 27:86-98, 1941.
[27] Gr. C. Moisil. Sur les anneaux de caractéristique 2 ou 3 et leurs applications. Bull. École Polytech. Bucarest [Bul. Politehn. Bucureşti], 12:66-90, 1941.
[28] Gr. C. Moisil. Logique modale. Disquisit. Math. Phys., 2:3-98, 1942.
[29] Gr. C. Moisil. Les logiques non-chrysipiennes et leurs applications. Acta Philosophica Fennica, 16:137-152, 1953.
[30] Gr. C. Moisil. Sur les idéaux des algèbres lukasiewicziennes trivalentes. An. Univ. "C. I. Parhon" Bucureşti Ser. Acta Logica, 3(1):83-95, 1960.
[31] Gr. C. Moisil. Essais sur les logiques non chrysippiennes. Éditions de l'Académie de la République Socialiste de Roumanie, Bucharest, 1972.
[32] António Monteiro. Construction des algèbres de Lukasiewicz trivalentes dans les algèbres de Boole monadiques. I. Math. Japon, 12:1-23, 1967. Also published in [34], pp. 1407-1429.
[33] António Monteiro and Roberto Cignoli. Construcción geométrica de las álgebras de Łukasiewicz trivalentes libres. Revista de la U.M.A., 22:152-153, 1965. Also published in [34], pp. 1399-1400.
[34] António A. Monteiro. The works of António A. Monteiro. Fundação Calouste Gulbenkian, Lisbon and The Humboldt Press, London, 2007.
[35] António A. Monteiro. Álgebras de Hilbert y de Tarski. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1960. Course notes.
[36] António A. Monteiro. Álgebras de Lukasiewicz trivalentes. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1963. Course notes.
[37] António A. Monteiro. Álgebras de Eukasiewicz trivalentes. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1963. Seminar notes.
[38] António A. Monteiro. $N$-lattices. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1963. Course notes.
[39] António A. Monteiro. Sur la définition des algèbres de Łukasiewicz trivalentes. Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 7 (55):3-12, 1963. Reprinted in [41]. Also published in [34], pp. 1363-1372.
[40] António A. Monteiro. Relations between Lukasiewicz three-valued algebras and monadic boolean algebras. In Proceedings of the International Congress for Logic Methodology and Philosophy of Science. Program and Abstracts. The Hebrew University, Jerusalem (1964), pages 16-17. The Hebrew University, 1964.
[41] António A. Monteiro. Sur la définition des algèbres de Łukasiewicz trivalentes, volume 21 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1964. Also published in [34], pp. 1363-1372.
[42] António A. Monteiro. Généralisation d'un théorème de R. Sikorski sur les algèbres de Boole. Bull. Sci. Math. (2), 89:65-74, 1965. Also published in [34], pp. 1379-1388.
[43] António A. Monteiro. Álgebras de De Morgan. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1966. Course notes.
[44] António A. Monteiro. Álgebras de Lukasiewicz trivalentes. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1966. Seminar notes.
[45] António A. Monteiro. Sur les algèbres de Heyting symétriques. Portugal. Math., 39(1-4):1237 (1985), 1980. Special issue in honor of António Monteiro. Also published in [34], pp. 1789-2025.
[46] António A. Monteiro. Álgebras de Heyting. Informe Técnico Interno 51, Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1995. Also published in [34], pp. 2061-2096.
[47] António A. Monteiro. Construction des algèbres de Boole libres dans les algèbres de Łukasiewicz trivalentes libres. In Unpublished papers, I, volume 40 of Notas Lógica Matemática, page 11. Univ. Nac. del Sur, Bahía Blanca, 1996. Also published in [34], pp. 2109-2118.
[48] António A. Monteiro. Unpublished papers. I, volume 40 of Notas de Lógica Matemática. Universidad Nacional del Sur, Instituto de Matemática (INMABB-CONICET), Bahía Blanca, 1996.
[49] António A. Monteiro. Álgebras de Łukasiewicz trivalentes con un número finito de generadores libres, álgebras de Moisil trivalentes con un número finito de generadores libres. Informe Técnico Interno 61, Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1998. Also published in [34], pp. 2217-2234.
[50] António A. Monteiro and Luiz Monteiro. Álgebras de Boole monádicas. Informe Técnico Interno 69, Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 1999. Also published in [34], pp. 2447-2541.
[51] António A. Monteiro and Luiz Monteiro. Álgebras de De Morgan. Informe Técnico Interno 72, Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 2000. Also published in [34], pp. 2279-2360.
[52] L. Monteiro. Extension d'homomorphismes dans les algèbres de Łukasiewicz trivalentes. Internat. Logic Rev., 2:193-200, 1970.
[53] Luiz Monteiro. Axiomes indépendants pour les algèbres de Lukasiewicz trivalentes. Bull. Math. de la Soc. Sci. Math. Phys. de la R.P. Roumaine, nouvelle série, 1963.
[54] Luiz Monteiro. Axiomes indépendants pour les algèbres de Lukasiewicz trivalentes, volume 22 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1964. Also in [53].
[55] Luiz Monteiro. Sur les algèbres de Heyting trivalentes, volume 19 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 1964.
[56] Luiz Monteiro. Sur les algèbres de Lukasiewicz injectives, volume 25 of Notas de Lógica Matemática. Instituto de Matemática de Bahía Blanca, Universidad Nacional del SurCONICET, 1964. Dissertation, Universidad Nacional del Sur, Bahía Blanca, 1986.
[57] Luiz Monteiro. Sur les algèbres de Lukasiewicz injectives. Proc. Japan Acad., 41:578-581, 1965. Also in [56].
[58] Luiz Monteiro. Sur le principe de détermination de Moïsil dans les algèbres de Łukasiewicz trivalentes. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), 13(61)(4):447-448 (1970), 1969.
[59] Luiz Monteiro. Les algèbres de Heyting et de Łukasiewicz trivalentes. Notre Dame J. Formal Logic, 11:453-466, 1970.
[60] Luiz Monteiro. Algèbre du calcul propositionnel trivalent de Heyting. Fund. Math., 74(2):99-109, 1972.
[61] Luiz Monteiro. Álgebras de Eukasiewicz trivalentes monadicas. Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1974. Doctoral Thesis,Universidad Nacional del Sur, Bahía Blanca, 1971.
[62] Luiz Monteiro. Álgebras de Eukasiewicz trivalentes monádicas, volume 32 of Notas de Lógica Matemática. Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, 1974.
[63] Luiz Monteiro. Algèbres de Post et de Moisil trivalentes monadiques libres. Logique et Analyse (N.S.), 20(79):329-337, 1977.
[64] Luiz Monteiro. Algèbres de Boole monadiques libres. Algebra Universalis, 8(3):374-380, 1978.
[65] Luiz Monteiro. Sur la construction $\mathcal{L}$ des algèbres de Łukasiewicz trivalentes. Rev. Roumaine Math. Pures Appl., 23(1):77-83, 1978.
[66] Luiz Monteiro. Álgebras de Boole. Informe Técnico Interno 66, Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 1998. Updated edition, 2002.
[67] Luiz Monteiro. Número de epimorfismos entre álgebras de Łukasiewicz finitas. Informe Técnico Interno 82, Instituto de Matemática de Bahía Blanca, Universidad Nacional del Sur-CONICET, 2003.
[68] Luiz F. Monteiro, Manuel Abad, Sonia Savini, and Julio Sewald. Finite free generating sets. Discrete Math., 189(1-3):177-189, 1998.
[69] Luiz F. Monteiro and Aída Kremer. Boolean matrices. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 44(92)(2):105-118, 2001.
[70] Luiz F. T. Monteiro and Lorenzo Gonzalez Coppola. Sur une construction des algèbres de Łukasiewicz trivalentes. Portugal. Math., 23:157-167, 1964.
[71] Figallo A. Monteiro L. and Ziliani A. Free three-valued Łukasiewicz, Post and Moisil algebras over a poset. In editor, editor, Proc. of the Twentieth international Symposium on multiple-valued logics, 1990.
[72] H. Rasiowa. $\mathcal{N}$-lattices and constructive logic with strong negation. Fund. Math., 46:61-80, 1958.
[73] Helena Rasiowa and Roman Sikorski. The mathematics of metamathematics. PWN—Polish Scientific Publishers, Warsaw, third edition, 1970. Monografie Matematyczne, Tom 41.
[74] Alan Rose. A lattice-theoretic characterisation of three-valued logic. J. London Math. Soc., 25:255-259, 1950.
[75] Marlow Sholander. Postulates for distributive lattices. Canadian J. Math., 3:28-30, 1951.
[76] Roman Sikorski. A theorem on extension of homomorphisms. Ann. Soc. Polon. Math., 21:332-335 (1949), 1948.
[77] Roman Sikorski. On the inducing of homomorphisms by mappings. Fund. Math., 36:7-22, 1949.
[78] Roman Sikorski. Boolean algebras. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 25. Springer-Verlag New York Inc., New York, 1969.

## Index

$B(L), 3$
L-subalgebra, 38
$\Delta$-filter, 51
Łukasiewicz algebra, 1
axled, 6
centered, 5
complete, 44
of sets, 27
determined by $\varphi, 27$
with axis, 6
with center, 5
3 -ring, 31
axis, 6
Birula-Rasiowa space, 124
canonical transformation, 57
cartesian product, 83
center, 5
consequence, 62
of a finite set, 61
of a sequence, 61
consequence operator, 62
constant, 3
coordinate axis, 84
Deduction Theorem, 64
deductive system, 50
bounded to an element, 66
completely irreducible, 67
contraposed, 52
irreducible, 67
maximum, 66
principal, 72
determinant system, 124
direct product, 83
dual of a property, 4
epimorphism, 49
existential quantifier, 25
discrete, 25
simple, 25
filter, 50
generators, 39
homomorphic image, 49
homomorphism, 49
natural, 58
implication
weak, 33
inductive set, 66
invariant, 3
isomorphism, 49
kernel, 50
Kleene space, 126
negation, 1
possibility, 1
quotient algebra, 58
quotient set, 57
relatively upward complete set, 128
separating set, 128
subalgebra, 38
subdirect product, 87
subdirectly irreducible, 87
subdirectly reducible, 87
Three-valued Łukasiewicz algebra, 1


[^0]:    ${ }^{1}$ The goal of A. Monteiro in presenting this definition was to use less axioms than those present in the different definitions by Moisil, while keeping the same operations as primitive.

[^1]:    ${ }^{2}$ Internal technical reports of the INMABB:
    http://inmabb-conicet.gob.ar/publicaciones/iti
    ${ }^{3}$ Mathematics Institute of Bahía Blanca, Argentina.
    ${ }^{4}$ Notes on Mathematical Logic: http://inmabb-conicet.gob.ar/publicaciones/nlm

[^2]:    ${ }^{5}$ See, for example, [66].

[^3]:    ${ }^{1}$ Notice that in this setting, $\bigvee \emptyset=0$.

[^4]:    ${ }^{2}$ From this point on, in this section, the original proofs by A. Monteiro have been replaced by simpler ones due to L. Monteiro.

[^5]:    ${ }^{3}$ The students were R. Cignoli, L. Iturrioz and L. Monteiro.

