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AN APPROXIMATION THEOREM FOR CERTAIN SUBSETS OF SOBOLEV SPACES

L]

A. Benedek and R. Panzone

SUMMARY. We show that a class of differentiable functions vanishing together
with their derivatives of order less than r an the boundary of a smooth domain

m+r,p(

) is dense in the subset of U 2) defined by the functions already in

ME’D(Q). We give a direct proof by introducing a particular extension operator

and a related reflegtion operator.
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1. PRELIMINARIES AND NOTATION. Let  be a domain in R". By (.,.) and

shall always denote the scalar product and norm in LZ(Q). For r a nonnegative

integer we denote by HFzQ) the Sobolev space H'(Q) := {u e D'(R); D*u € LZ(Q)
[a]
for |a| s r} with the norm |usH (Q)] = ( % ”Dau”2)1/2 and by H'(R) the
of|=r

closure of C_"(2) in H'(Q) (cfr. [A] where HT(R) = UT*2(R) and HT(Q) = mg’z(sz)).

We state some well known facts about these spaces that we shall need in what

follows.
LEMMA 1. T£ u € #(R), v e Y and |a| S 2, then
(0%,0) = (u,0%).

PROCF. If v, E Cz(Q) is a sequence such that "Vh - viH Q)| » 0 then

(Dau,v) = lim (Dau,vh) = lim (u,Davh) = (U,DaV), Q.E.D.

h > o h +> o

Let  be a bounded domain with ¢ boundary (i.e. there exists a finite open
covering of 3%, {Uj; j =1, ...y N}, such that for each j there is a map ¢j
from Uj onto B = {y € R"; |y| <1} with the properties: i) ¢j is one to one,

s s @ -1 o0 < s s + +
s /9 : [ i . . = = H = n .
ii) ¢J e C (UJ) ¢J e C (B), iii) ¢J(an Q) =B {ye B Y, > 0} B Rn)

LEMMA 2. I/ w € CY(R) and D% = 0 on 30 fon |a| < 2, then u € WS,

N
PROOF. Let UO be an open subset of Q such that U UjiD . Using a c” partition
j=0

of unity subordinate to this covering one sees that it is enough to prove that:

if v e Cr(R:), Dau(x1,...,xn_1,0) = 0 for Ial < r and supp u is bounded, then
[a] .
uE Hr(R:), (cf. [A], T.3.35, particularly feormula (15)). Now in that case let

U(x) := u(x) for x € R; and 0 otherwise. Then Gauss' theorem yields for



b € C:(Rn) and |a| s

r~~/

J (-1)|Q|GDG¢ dx = (_1)IWIJ uDa¢ dx = J +_Dau.(bdx = J Dau.¢dx
R R R R

n n n n

- ~
That is, DU is the function D* for |a| <1 and so U ¢ Hr(Rn). But then

u = lim v_ in HY(R') where v (x) = O(x yeeesX . 9X_ - €). Since supp v_ is
e >0 n € 1 n-1""n €

o
compact in R;, v € Hr(R:) and the proof is complete, Q.E.D.

2. INTRODUCTION. For r, R positive integers, r < R, let us call Hr R(Q) the
*
o
Hilbert space Hr R(Q) i= Hr(Q) n HR(Q) with the norm of HR(Q) and call
9

Dr(Q) 2= {0 € C7(Q); 0% = 0 on 39 for |a] < r}. Now let Q be a bounded domain

with €% boundary. By Lemma 2,DI(Q)<: Hr R(Q). (It also follows that this space
?

(s}
contains properly the space HR(Q), cf. Th.5). In this paper we prove that
Dr(Q) is a dense subset of Hr R(Q). That is

THEOREM 1. I£ G o(Q) = closure of D (9) in #(Q), then

g

2 RO = 1 A8,

This theorem can be proved in the particular case R = 2t using results of

P.D.E. as follows. For A > 0 the operator (—A)r + X maps Hr Zr(Q) continuously
’

into LZ(Q). This map is also 1:1 since for u € HL 2r(Q) using Lemma 1 we obtain
9

((-8)%u + Au,u) = % (21/a!)(0°%,u) + Au]? =
| =T

L I % (r!/aD0%[% + AJu)?.
o =T

On the other hand for X\ great enough ((-A)% + )\)[3r = LZ(Q) (cfr. [5], Th.

3 2T

(Q) = H (Q). We shall give a direct

g - 27, pg. 219). In consequence G. .21

» 2T



proof of this fact and moreover of Theorem 1. By using a partition of unity as

in Lemma 2 it is enough to prove

THEOREM 2. Lot K Ge @ compact set in B and u e K, R(R;) with supp u < K N RA.
y 4

Then thene exists a sequence w, € DQ(R;) such that supp u, = B" and

A
P ﬁR(R;)” >0 fon h +

Our proof relies on the following result.

3. AUXILIARY LEMMA. Given R .integens K7, Kepy oeey Kk there exists a poblynomial

rlx) of degree R - 1 such that

L) p(2j} is an integen fon 4 =0, 1, ...
) a2

n

R

A
3
1A

Km (mod 2) fon 1

m—7)

A
3

id) pl2

11

Ky (mod 2) fon R
PROCF. If x, = 22N i =1, 2, ..., R, define p(x) by

R -1 R
p(x) := ¥ h, T ((x - xk)/xk). 1 ((x - xk)/x.)
j=1 9 k= k=j+1 J
where h, = 0 if k. is even and h, = 1 if K, is odd.
J J J J
Observe that p(x) satisfies i) and ii) since (xj - xk)/xS is odd for

s = min (j,k) and is even for s < min (j,k). By the same reasoning for x = X

m > R, the first product in the definition of p is odd and the last is even

when not empty. So p(xm) - p(xR) is even, Q.E.D.

COROLLARY. Given R integens K7, cees k;, there exists an entine function £(z)
without zenoes such that

. K.
O T e c1)F gon j =1, L, R

i) ) . 1/£02271) fon j € n.



PROOF. Define
(1) f(z) := exp(imp(z))

where p(z) is the polynomial in the preceding lemma. Then both f(z) and
g(z) := 1/f(z) have the required properties, Q.E.D.

[e o]
4. AN EXTENSION OPERATOR. Let f(z) = } ckzk be an entire function. We
k=0

associate to f the operator

(o]

(2) (Tou)(x',t) 1= 1 (x',-2%t)
1:\U X kzD CkU X

where x' = (x1,...,x ) € Rn—1’ t eR

7°

Tf is well defined if u vanishes outside a sphere.

n-1

THEOREM 3. 702 u € HR(R;), sUPP U S B°, we have:

<L) BUPP 7Zu<: B, TZU > HR(R;)

i) N7t RN s AN R ant
(3) Da7zu - 7,[/1(0%) for h=a, lo| 5 R
whenre [h L4 the entine funcition

(4) £(2) 2= (1) b e 2 1))
=

PROOF. The first assertion of i) is immediate. The second follows from ii).
Observe that if x = (x',t) € K, a compact set in R;, then the sum defining

Tfu(x',t) is finite. Therefore (3) is correct in D'(R;). To prove ii) it is

therefore encugh to prove



2/5- 2
(5) Ie ost 2O = m(r st (RO
But ”u(x',—2kt)” = 2_k/2 lull. summing up, one gets
oo
k{zh-1)/2
I7e ul s (5 e, [.2<2n1/2) ) 0.€.0.
h k=0

Observe that the lemma remains true if the roles of R: and R; are interchanged.

Now we define the extension operator Ef associated to f(z) = Z o) zk by

k

u{x',t) for t >0
(6) Efu(x',t) :=1¢ 0 for t =
T.u(x',t) for t < 0.

f_‘

THEOREM 4, Let u € Hﬂ R(R;)’ closure in Rn of supp u= B, If the entine funcition
4

£(z) vernities
(7) £202°) = (=1)% for s =ny n 41, evuy R =1

then € € HR(RQJ, supp & pu < B and

HA

(8) lpstl (R N s Coplustl RN

PROOF. We shall show that if |a| <R, h = @ and f_ is defined by (4), then

(9) Da(Efu) = th(Dau).

Therefore, the theorem will follow from Th.3. To prove (9) we consider two

cases.

.

CASE 1: o = (O, ..., D, h). Let ¢ & Co(R ). Then if we set x = (x',t),



(10) <DaEfu,¢> = (-1)N<e u,02¢> -

f.‘

. (uD:¢ YU cku(x',2kt).D:¢(x’,—t)) dx =
R k=0

= (—1)hJ N uDh¢dx + ; Z(h_1)kckj N u(x)D:(¢(x',—2_kt)) dx =
R

n n

= (-1)h u(x)th (x',t) dx'dt
+ tvh

n

with

(1) b(xhe) = alxtht) = T (29N e alxr, 27,
k=0

[s o]

.Mk <« for any M >0, it is possible to interchange Z and [ in

Since Z |C

k=0 <

o, 4 S/t
(10). Also wh £ Co(Rn) n H (Rn) for any s.

Now we shall show that

h h h
(12) "] w0l (x1,0) o - J . o v o
n n

Or,+
)

In fact, since u € H (Rn s by Lemma 1,

h h ) h- 3 i hej .
(13) (-1) J L U0 dx = (-1) J . DpueDy -y dx for j = min(h,r).

R R t
n n

This proves (12) for h s r. If h>r, then in view of (7), wh(x',D) = 0 and

Ol -
also DYwh(x',D) =0 for |y| <h - r. Then by Lemma 2, b, € Vil r(R:), and we

can apply again Lemma 1 to the right hand side of (13) (j = r nou!) thus
obtaining (12).
The combination of (10) with (12) yields



o [ ~ o
<D Efu,¢> = J D u.wh dx = <th(D u),b>.

CASE 2: a = (a1"°"an-1’0)‘ Then (8) is true regardless condition (7) for
Qrpt )
ueH(RD), g2 [a]. In fact, let n(t) e C (R;)s n =0 for |t] <1/2, n =1
for |t| > 1, and call ne(t) := n(t/e). Then for ¢ C:C:(Rn) we have
00, - +
n€¢ € CD(Rn U Rn) and so

<OYE u,0> = (-1)|“|<E 0, = (-0l 1 < u,n_ D%> =
£ f c g e

= lim (—1)Ia|<Efu,Da(n€¢)> = lim <Ef(Dau),n€¢> = <E_(0%),d>.

(
e~>0 e + 0 f

To combine this two cases we write o = (a ,...,an_1,0) + (0,...,0,h) = o' + "

1 "t
and obtain Da(Efu) - p® £ (0% ) = . (0%), Q.E.D.
h h

S5.A REFLECTION OPERATOR. Next we define an operator E which is a generalization
of d(x',t) » -d(x',-t). Let f(z) = ¥ ckzk be the entire function constructed in
k=0

the Corollary of section 3 for Ki =1 if i s r and Ki =1i-1forr <igR.

That is

(a) F22 Ny = ()t for1sisry fEY) = (YT forr <

A
el

Further, let g(z) := 1/f(z) = ) dkz . For v a function with bounded support
k=0
let us define
(Tv= ) d u(x',—2kt) for t > 0,
o] k
k=0
Ev(x';t) 1=
= k
va = ) ckv(x',—Z t), t =0,
k=0



LEMMA 3. I/ ¢ € c‘;"(/?n )y then

i & eCIR )

i) Eb = b implies b € DQ(R;)

i) E6 =6

) @R | s 1 |oiHP(R ] V s e

v)  Let v e H(RY), support of v < B. If the sequence {6,} = C(B) verifics

tin o - v #H(RY)| = 0, then

m =+ o

Lin € - Ev;H(R)| = 0.

m > o

PROOF. i) It is clear from the definition that supp E¢ is bounded and that

®, - +
Eb € C (Rn 4] Rn). Also

® kO. a Q.
DEd(x',+0) = ( I 9, (-2) M0%(x",0) = (-1) "g(2 "% (x',0)
k=0

(15) 3«

oo kOL Q Q
06 (x'5-0) = ([ ¢ (-2) M0 (x',0) = (1) "F(2 )" (x',0).
k=0
i) then follows from
(16) F2™M = g(2M = 1.

ii) Let @ <r. Using (15) and (14) it follows that

(17) DYEd(x',0) = (—1)unf(2an)Du¢(x',D) = D% (x',0).

But if E¢ = ¢ then
(18) D*Ed(x',0) = D% (x',0).

Comparing (17) and (18) we get Da¢(x',0) =0 for |a| < r, that is ¢ € Dr(R:).



iii) Observe that T Tf¢(x',t) = 7 dk( ) ch¢(x',2
9 k=0  h=0

k+ht)) -

. J
¢(x'92Jt)( z
k=

I
X
OM 8

dkcj-k)'

J 0

J
Since f(z).g(z) = 1 we have ) dkcj—k =1 if j =0 and 0 otherwise. Therefore,
k=0

it holds pointwise that

(19) Tng¢(x',t) = p(x',t) = Tng¢(x',t).

. Now Theorem 3 yields iv).

iv) By i), [EGsH(R )| s ITeosH>(R™| + ”Tg¢;HS(R:)
v) By iv), E¢m is a Cauchy seguence in HS(Rn). Therefore, there exists

U e H3(R") such that lEo_ - UsHZ(R™)| tends to zero.

But in virtue of Theorem 3, ii) both norms ”E¢m - Tgv;HS(R:)” and

”E¢m - va;HS(R;)” tend to zero. So U restricted to R: is equal to Tgv and U

restricted to R; is Tfu. Since the distribution U is a function of L2(R”) it

follows that U = Ev, Q.E.D.

Note that conditions (14) for r < i s R are not really used in the proof of

Lemma 3.

6. PROOF OF THECOREM 2. Let u € Ho R(R:), supp U = K and call u' := Eeu
b

(cfr. (B)). Observe that by (14) the hypotheses of Theorem 4 are fullfilled.
Thereby u' € HR(Rn), supp u' = K' = compact in B and Eu' ¢ HR(Rn). In
consequence, from the definition of u' we have Eu' = u' a.e. (cf. (19)). Now

let ¢% € C:(B) be a sequence converging to u' in HR(Rn). By Lemma 3, v), E¢%

converges to Eu' = u' in HR(Rn) and then

(20) lu - ¢h;HR(Rn)" >0 for h= 0

if 0, := (¢% + E¢%)/2.

Using Lemma 3, iii), we see that E¢h = ¢,,- Then by ii) of the same Lemma we

X . + + . R, +
obtain that U, i= 6, restricted to R, belongs to Dr(Rn)° Since |Ju - Uy, M (Rn)” =

10



= Ju' - ¢ ;HR(R+) < flu' - ¢ ;HR(R I » we see by (20) that the sequence u
h n h n h

satisfies all the requirements, Q.E.D.

7. FINAL REMARKS. a) The construction of our extension operator Ef is

essentially the one used by Seeley in [Se] however corresponding to entire
functions of different nature. In order that E. extends CG?R:) to CatRn),

Seeley needs f(2h) = (—1)h for h = 0, 1, ««. . This is never true for our f

since we have F(Zh) = (—1)h+1 for h =0, ..., r - 1 (and besides f(Zh) = (-1)R-1
for h 2 R). On the other hand the coefficients a, found by Seeley define an

entire function of exponential type with zeroes and in that case g = 1/f is not

an entire function (cfr. [A], [Se]).
b) Our method can be applied to prove that Dr(Q) is dense in other Banach

spaces. For 1 s p<ow, 0 < r < R, r, R integers, define

| .

W (@) = wP@) 0 WPPQ)  uith the norm | sufoP
’

THEQREM 112 17 Q s a Gounded domain with C° foundary, then D (Q) is dense in

W A,

Ty
This theorem reduces to prove

THEOREM 2', {4 ¢ DQ(R;): supp u bounded} (s dense in MQ’R(R;).

The proof follows the same lines as that of Theorem 2 noticing that the

operator Ef defined by (6) is continuous from wg R(R:) into wR’p(Rn). and the

operator £ of Lemma 3 is continuous in wR’p(Rn). Lemma 2 should be replaced by

LEMMA 21, If w e C*(R) and D™ = 0 on 3Q fon la| < 2, then u e W),

THEOREM 5. Let 2 le, a positive integen and R a nonnegative one. The completion

of DQ(Q) in the norm ”.;WR'p(Q)” L8 Lsomoaphic to the space Mf’p(ﬂj LR s a

and isomonphic 2o

AV ZUIP) g R >

11



PROOF. In fact, for R = r, because of Lemma 2', we have

Co(R) = D_(Q) = D(@) = wg’p(Q).

If R>r, it follows from Theorem 1' that mg :>m2’°. To prove that the
2

R
inclusion is proper consider the function k(x) = x§¢(x')w(xn) restricted to R:
where ¢(x') € Cz(Rn_1), Ve CZ(R1), ¢ and ¥ equal to one in a neighborhood of
zero. Then, k is of bounded support and belongs to MR’D(R:) n mg’p(R;). If k
belonged to US’D(R:) then Kk should belong to MR’D(RH). However, D§+1Q is not

n

a function, Q.E.D.
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