INFORME TECNICO INTERNO

Nº. 12

INSTITUTO DE MATEMATICA DE BAHIA BLANCA
INMABB (UNS - CONICET)

UNIVERSIDAD NACIONAL DEL SUR
Avda. ALEM 1253 - 8000 BAHIA BLANCA
República Argentina

INFORME TECNICO INTERNO N°12

AN APPROXIMATION THEOREM FOR CERTAIN SUBSETS OF SOBOLEV SPACES

A. Benedek and R. Panzone

SUMMARY. We show that a class of differentiable functions vanishing together with their derivatives of order less than r on the boundary of a smooth domain Ω is dense in the subset of $\operatorname{W}^{m+r,p}(\Omega)$ defined by the functions already in $\operatorname{W}^{r,p}_0(\Omega)$. We give a direct proof by introducing a particular extension operator and a related reflection operator.

17 de mayo de 1988

1. PRELIMINARIES AND NOTATION. Let Ω be a domain in R^{Γ} . By (,,) and $\|\cdot\|$ we shall always denote the scalar product and norm in $L^2(\Omega)$. For r a nonnegative integer we denote by $H^{\Gamma}(\Omega)$ the Sobolev space $H^{\Gamma}(\Omega):=\{u\in D^{\dagger}(\Omega);\ D^{\Omega}u\in L^2(\Omega)\}$ for $|\alpha|\leq r\}$ with the norm $||u;H^{\Gamma}(\Omega)||=(\sum\limits_{|\alpha|\leq r}||D^{\Omega}u||^2)^{1/2}$ and by $H^{\Gamma}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $H^{\Gamma}(\Omega)$ (cfr. [A] where $H^{\Gamma}(\Omega)=w^{\Gamma,2}(\Omega)$ and $H^{\Gamma}(\Omega)=w^{\Gamma,2}(\Omega)$). We state some well known facts about these spaces that we shall need in what follows.

LEMMA 1. If $u \in \mathcal{H}^{2}(\Omega)$, $v \in \mathring{\mathcal{H}}^{2}(\Omega)$ and $|\alpha| \leq r$, then

$$(\partial^{\alpha}u,\nu)=(u,\partial^{\alpha}\nu).$$

PROOF. If $\mathbf{v}_{h} \in C_{0}^{\infty}(\Omega)$ is a sequence such that $\|\mathbf{v}_{h} - \mathbf{v}; \mathbf{H}^{r}(\Omega)\| \to 0$ then

$$(D^{\alpha}u,v) = \lim_{h \to \infty} (D^{\alpha}u,v_h) = \lim_{h \to \infty} (u,D^{\alpha}v_h) = (u,D^{\alpha}v), \qquad Q.E.D.$$

Let Ω be a bounded domain with C^{∞} boundary (i.e. there exists a finite open covering of $\partial\Omega$, $\{U_{j};\ j=1,\ldots,N\}$, such that for each j there is a map φ_{j} from U_{j} onto $B=\{y\in R^{n};\ |y|<1\}$ with the properties: i) φ_{j} is one to one, ii) $\varphi_{j}\in C^{\infty}(U_{j}),\ \varphi_{j}^{-1}\in C^{\infty}(B),\ \text{iii})\ \varphi_{j}(U_{j}\cap\Omega)=B^{+}=\{y\in B;\ y_{n}>0\}=B\cap R_{n}^{+}).$

LEMMA 2. If $u \in C^{r}(\overline{\Omega})$ and $\widehat{D}^{\alpha}u = 0$ on $\partial\Omega$ for $|\alpha| < r$, then $u \in \mathring{\mathcal{H}}^{r}(\Omega)$.

PROOF. Let U_0 be an open subset of Ω such that $\bigcup_{j=0}^N U_j \Rightarrow \overline{\Omega}$. Using a \mathbb{C}^∞ partition of unity subordinate to this covering one sees that it is enough to prove that: if $u \in \mathbb{C}^r(\overline{R}_n^+)$, $D^\alpha u(x_1, \dots, x_{n-1}, 0) = 0$ for $|\alpha| < r$ and supp u is bounded, then $u \in H^r(R_n^+)$, (cf. [A], T.3.35, particularly formula (15)). Now in that case let $\widetilde{u}(x) := u(x)$ for $x \in R_n^+$ and 0 otherwise. Then Gauss' theorem yields for

 $\phi \in C_0^{\infty}(R_n)$ and $|\alpha| \le r$

$$\int_{\mathsf{R}_{\mathsf{D}}} (-1)^{|\alpha|} \widetilde{\mathsf{u}} \mathsf{D}^{\alpha} \varphi \ \mathsf{d} \mathsf{x} \ = \ (-1)^{|\alpha|} \int_{\mathsf{R}_{\mathsf{D}}^+} \mathsf{u} \mathsf{D}^{\alpha} \varphi \ \mathsf{d} \mathsf{x} \ = \int_{\mathsf{R}_{\mathsf{D}}^+} \mathsf{D}^{\alpha} \mathsf{u} . \varphi \, \mathsf{d} \mathsf{x} \ = \int_{\mathsf{R}_{\mathsf{D}}} \widetilde{\mathsf{D}^{\alpha}} \mathsf{u} . \varphi \, \mathsf{d} \mathsf{x}$$

That is, $D^{\alpha}\tilde{v}$ is the function $D^{\alpha}u$ for $|\alpha| \leq r$ and so $\tilde{v} \in H^{r}(R_{n})$. But then $u = \lim_{\epsilon \to 0} v_{\epsilon} \text{ in } H^{r}(R_{n}^{+}) \text{ where } v_{\epsilon}(x) = \tilde{v}(x_{1}, \dots, x_{n-1}, x_{n} - \epsilon). \text{ Since supp } v_{\epsilon} \text{ is compact in } R_{n}^{+}, v_{\epsilon} \in H^{r}(R_{n}^{+}) \text{ and the proof is complete, Q.E.D.}$

2. INTRODUCTION. For r, R positive integers, r < R, let us call $H_{r,R}(\Omega)$ the Hilbert space $H_{r,R}(\Omega):=\overset{\circ}{H^r}(\Omega)$ \cap $H^R(\Omega)$ with the norm of $H^R(\Omega)$ and call $D_r(\Omega):=\{\varphi\in C^\infty(\overline{\Omega});\ D^{\alpha}\varphi=0\ \text{on}\ \partial\Omega\ \text{for}\ |\alpha|< r\}$. Now let Ω be a bounded domain with C^∞ boundary. By Lemma 2, $D_r(\Omega)\subset H_{r,R}(\Omega)$. (It also follows that this space contains **properly** the space $\overset{\circ}{H^R}(\Omega)$, cf. Th.5). In this paper we prove that $D_r(\Omega)$ is a dense subset of $H_{r,R}(\Omega)$. That is

THEOREM 1. If $\mathcal{G}_{n,R}(\Omega) := closure of D_{n}(\Omega)$ in $\mathcal{H}^{R}(\Omega)$, then

$$\mathcal{G}_{n,R}(\Omega) = \mathcal{H}_{n,R}(\Omega).$$

This theorem can be proved in the particular case R = 2r using results of P.D.E. as follows. For $\lambda > 0$ the operator $(-\Delta)^{\Gamma} + \lambda$ maps $H_{r,2r}(\Omega)$ continuously into $L^2(\Omega)$. This map is also 1:1 since for u ϵ $H_{r,2r}(\Omega)$ using Lemma 1 we obtain

$$((-\Delta)^{r} \cup + \lambda \cup \cup) = \sum_{|\alpha|=r} (r!/\alpha!)(D^{2\alpha} \cup \cup) + \lambda \| \cup \|^{2} =$$

$$: = \sum_{|\alpha|=r} (r!/\alpha!) \|D^{\alpha}u\|^2 + \lambda \|u\|^2.$$

On the other hand for λ great enough $((-\Delta)^{\mathbf{r}} + \lambda) \mathbf{G}_{\mathbf{r},2\mathbf{r}} = \mathbf{L}^2(\Omega)$ (cfr. [S], Th. 9 - 27, pg. 219). In consequence $\mathbf{G}_{\mathbf{r},2\mathbf{r}}(\Omega) = \mathbf{H}_{\mathbf{r},2\mathbf{r}}(\Omega)$. We shall give a direct

proof of this fact and moreover of Theorem 1. By using a partition of unity as in Lemma 2 it is enough to prove

THEOREM 2. Let K be a compact set in B and $u \in H_{n,R}(R_n^t)$ with supp $u \subset K \cap R_n^t$.

Then there exists a sequence $u_h \in D_n(R_n^t)$ such that supp $u_h \subseteq B^t$ and $\|u_h - u_i H^R(R_n^t)\| \to 0$ for $h \to \infty$.

Our proof relies on the following result.

3. AUXILIARY LEMMA. Given R integers K_1 , K_2 , ..., K_R there exists a polynomial p(x) of degree R-1 such that

i)
$$p(2^j)$$
 is an integer for $j = 0, 1, ...$

$$ii) \quad \rho(2^{m-1}) = K_m \pmod{2} \text{ for } 1 \leq m \leq R$$

iii)
$$p(2^{m-1}) = K_R \pmod{2}$$
 for $R < m$.

PROOF. If $x_i = 2^{i-1}$, i = 1, 2, ..., R, define p(x) by

$$p(x) := \sum_{j=1}^{R} h_{j} \prod_{k=1}^{j-1} ((x - x_{k})/x_{k}) \cdot \prod_{k=j+1}^{R} ((x - x_{k})/x_{j})$$

where $h_j = 0$ if k_j is even and $h_j = 1$ if K_j is odd.

Observe that p(x) satisfies i) and ii) since $(x_j - x_k)/x_s$ is odd for $s = \min(j,k)$ and is even for $s < \min(j,k)$. By the same reasoning for $x = x_m$, m > R, the first product in the definition of p is odd and the last is even when not empty. So $p(x_m) - p(x_R)$ is even, Q.E.D.

COROLLARY. Given R integers K_1 , ..., K_R , there exists an entire function f(z) without zeroes such that

i)
$$f(2^{j-1}) = (-1)^{K_j}$$
 for $j = 1, ..., R$

ii)
$$f(2^{j-1}) = 1/f(2^{j-1})$$
 for $j \in N$.

PROOF. Define

(1)
$$f(z) := \exp(i\pi p(z))$$

where p(z) is the polynomial in the preceding lemma. Then both f(z) and g(z) := 1/f(z) have the required properties, Q.E.D.

4. AN EXTENSION OPERATOR. Let $f(z) = \sum_{k=0}^{\infty} c_k z^k$ be an entire function. We associate to f the operator

(2)
$$(T_{f^{u}})(x',t) := \sum_{k=0}^{\infty} c_{k} u(x',-2^{k}t)$$

where $x' = (x_1, \dots, x_{n-1}) \in R_{n-1}$, $t \in R_1$. T_f is well defined if u vanishes outside a sphere.

THEOREM 3. For $u \in \mathcal{H}^{\mathcal{R}}(\mathcal{R}_n^+)$, supp $u \subset \mathcal{B}^+$, we have:

i) supp
$$T_{\mu} \subset B^{-}$$
, $T_{\mu} \in H^{R}(R_{n}^{-})$

ii)
$$\|T_{\ell}u_i H^{R}(R_n^{-})\| \leq M(\ell) \|u_i H^{R}(R_n^{+})\|$$
 and

(3)
$$\partial^{\alpha} T_{\ell} u = T_{\ell}(\partial^{\alpha} u) \quad \text{for } h = \alpha_{n}, \ |\alpha| \leq R$$

where f_h is the entire function

(4)
$$f_h(z) := (-1)^h \sum_{k=0}^{\infty} c_k 2^{h \cdot k} z^k = (-1)^h f(2^h z).$$

PROOF. The first assertion of i) is immediate. The second follows from ii). Observe that if $x = (x',t) \in K$, a compact set in R_n^- , then the sum defining $T_f u(x',t)$ is finite. Therefore (3) is correct in $D'(R_n^-)$. To prove ii) it is therefore enough to prove

(5)
$$\| T_{f_h} u; L^2(R_n^-) \| \leq M(f_h) \| u; L^2(R_n^+) \|.$$

But $\|\mathbf{u}(\mathbf{x}', -2^{\mathbf{k}}\mathbf{t})\| = 2^{-\mathbf{k}/2} \|\mathbf{u}\|$. Summing up, one gets

$$\|T_{f_h}u\| \le (\sum_{k=0}^{\infty} |c_k| \cdot 2^{k(2h-1)/2}) \|u\|$$
 Q.E.D.

Observe that the lemma remains true if the roles of R_n^+ and R_n^- are interchanged. Now we define the **extension** operator E_f associated to $f(z) = \sum_{k} c_k z^k$ by

(6)
$$E_{f}u(x',t) := \begin{cases} u(x',t) & \text{for } t > 0 \\ 0 & \text{for } t = 0 \\ T_{f}u(x',t) & \text{for } t < 0. \end{cases}$$

THEOREM 4. Let $u \in \mathcal{H}_{r,R}(\mathbb{R}_n^t)$, closure in R_n of supp $u \subset B$. If the entire function f(z) verifies

(7)
$$f(2^{\delta}) = (-1)^{\delta} \quad \text{for } s = n, \ n+1, \dots, R-1$$

then $\mathcal{E}_{\mu} \in \mathcal{H}^{R}(R_{n})$, supp $\mathcal{E}_{\mu} \subset \mathcal{B}$ and

(8)
$$\|\mathcal{E}_{\ell}u_{i}\mathcal{H}^{R}(\mathcal{R}_{n})\| \leq C(\ell)\|u_{i}\mathcal{H}^{R}(\mathcal{R}_{n}^{+})\|.$$

PROOF. We shall show that if $|\alpha| \le R$, $h = \alpha_n$ and f_h is defined by (4), then

$$D^{\alpha}(E_{f^{U}}) = E_{f_{h}}(D^{\alpha}_{U}).$$

Therefore, the theorem will follow from Th.3. To prove (9) we consider two cases.

CASE 1:
$$\alpha = (0, ..., 0, h)$$
. Let $\phi \in C_0^{\infty}(R_n)$. Then if we set $x = (x',t)$,

$$<0^{\alpha} E_{f} u, \phi > = (-1)^{h} < E_{f} u, D_{t}^{h} \phi > =$$

$$= (-1)^{h} \int_{R_{n}^{+}} (uD_{t}^{h} \phi + (-1)^{h} \sum_{k=0}^{\infty} c_{k} u(x', 2^{k}t) \cdot D_{t}^{h} \phi(x', -t)) dx =$$

$$= (-1)^{h} \int_{R_{n}^{+}} uD_{t}^{h} \phi dx + \sum_{k=0}^{\infty} 2^{(h-1)k} c_{k} \int_{R_{n}^{+}} u(x) D_{t}^{h} (\phi(x', -2^{-k}t)) dx =$$

$$= (-1)^{h} \int_{R_{n}^{+}} u(x) D_{t}^{h} \psi_{h}(x', t) dx' dt$$

with

(11)
$$\psi_h(x',t) = \phi(x',t) - \sum_{k=0}^{\infty} (-2^k)^{h-1} c_k \phi(x',-2^{-k}t).$$

Since $\sum_{k=0}^{\infty} |c_k| \cdot M^k < \infty$ for any M > O, it is possible to interchange \sum and \sum in (10). Also $\psi_h \in C_0^{\infty}(R_n^+) \cap H^S(R_n^+)$ for any s. Now we shall show that

(12)
$$(-1)^{h} \int_{R_{D}^{+}} u(x) D_{t}^{h} \psi_{h}(x',t) dx = \int_{R_{D}^{+}} D_{t}^{h} u \cdot \psi_{h} dx.$$

In fact, since u $\epsilon \stackrel{\circ}{H}^r(R_{_{\textstyle extsf{D}}}^+)$, by Lemma 1,

$$(-1)^{h} \int_{R_{D}^{+}} u D_{t}^{h} \psi_{h} dx = (-1)^{h-j} \int_{R_{D}^{+}} D_{t}^{j} u \cdot D_{t}^{h-j} \psi_{h} dx \text{ for } j = \min(h,r).$$

This proves (12) for h \leq r. If h>r, then in view of (7), $\psi_h(x',0) = 0$ and also $D^{\gamma}\psi_h(x',0) = 0$ for $|\gamma| < h - r$. Then by Lemma 2, $\psi_h \in H^{h-r}(\mathbb{R}_n^+)$, and we can apply again Lemma 1 to the right hand side of (13) (j = r now!) thus obtaining (12).

The combination of (10) with (12) yields

$$\langle D^{\alpha}E_{f}^{U}, \phi \rangle = \int D^{\alpha}U.\psi_{h} dx = \langle E_{f_{h}}(D^{\alpha}U), \phi \rangle.$$

CASE 2: $\alpha=(\alpha_1,\ldots,\alpha_{n-1},0)$. Then (9) is true regardless condition (7) for $u\in H^q(R_n^+)$, $q\geq |\alpha|$. In fact, let $\eta(t)\in C^\infty(R_1)$, $\eta=0$ for |t|<1/2, $\eta=1$ for |t|>1, and call $\eta_{\epsilon}(t):=\eta(t/\epsilon)$. Then for $\varphi\subset C_0^\infty(R_n)$ we have $\eta_{\epsilon}\varphi\in C_0^\infty(R_n^-\cup R_n^+)$ and so

$$= (-1)^{|\alpha|} < E_{f}^{u}, D^{\alpha}\phi> = (-1)^{|\alpha|} \lim_{\epsilon \to 0} < E_{f}^{u}, \eta_{\epsilon}D^{\alpha}\phi> = (-1)^{|\alpha|} \lim_{\epsilon \to 0} < E_{f}^{u}, \eta_{\epsilon}D^{\alpha}\phi> = (-1)^{|\alpha|}$$

$$=\lim_{\epsilon\to 0} (-1)^{|\alpha|} \langle E_f \cup D^{\alpha}(\eta_{\epsilon} \phi) \rangle = \lim_{\epsilon\to 0} \langle E_f(D^{\alpha} \cup D^{\alpha} \cup D^{\alpha}$$

To combine this two cases we write $\alpha = (\alpha_1, \dots, \alpha_{n-1}, 0) + (0, \dots, 0, h) = \alpha' + \alpha''$ and obtain $D^{\alpha}(E_f u) = D^{\alpha'}E_f (D^{\alpha''}u) = E_f (D^{\alpha}u)$, Q.E.D.

5.A REFLECTION OPERATOR. Next we define an operator E which is a generalization of $\phi(x',t) \to -\phi(x',-t)$. Let $f(z) = \sum_{k=0}^{\infty} c_k z^k$ be the entire function constructed in the Corollary of section 3 for K_i = i if i \leq r and K_i = i - 1 for r < i \leq R. That is

(14)
$$f(2^{i-1}) = (-1)^i$$
 for $1 \le i \le r$; $f(2^{i-1}) = (-1)^{i-1}$ for $r < i \le R$.

Further, let $g(z) := 1/f(z) = \sum_{k=0}^{\infty} d_k z^k$. For v a function with bounded support let us define

$$\mathsf{Ev}(x';t) := \begin{cases} \mathsf{T}_g \mathsf{v} = \sum_{k=0}^{\infty} \mathsf{d}_k \mathsf{v}(x',-2^k t) & \text{for } t > 0, \\ \\ \mathsf{T}_f \mathsf{v} = \sum_{k=0}^{\infty} \mathsf{c}_k \mathsf{v}(x',-2^k t), & t \leq 0. \end{cases}$$

LEMMA 3. If $\phi \in C_o^{\infty}(R_n)$, then

i)
$$\xi \varphi \in C_o^{\infty}(R_n)$$

ii)
$$\xi \phi = \phi$$
 implies $\phi \in D_{\Lambda}(R_{n}^{\dagger})$

$$iii)$$
 $\varepsilon^2 \phi = \phi$

$$||\mathcal{E}\phi_i\mathcal{H}^s(\mathcal{R}_n)|| \leq \mathcal{M}_s ||\phi_i\mathcal{H}^s(\mathcal{R}_n)|| \qquad \forall s \in N.$$

v) Let $v \in \mathcal{H}^{S}(\mathbb{R}^{n})$, support of $v \subset B$. If the sequence $\{\phi_{m}\} \subset C_{0}^{\infty}(B)$ verifies $\lim_{m \to \infty} \|\phi_{m} - v ; \mathcal{H}^{S}(\mathbb{R}^{n})\| = 0, \text{ then }$

$$\lim_{m \to \infty} \| \mathcal{E} \phi_m - \mathcal{E} \upsilon_{i} \mathcal{H}^{s}(\mathcal{R}^n) \| = 0.$$

PROOF. i) It is clear from the definition that supp E ϕ is bounded and that E ϕ ϵ $C^{\infty}(R_n^-$ U $R_n^+)$. Also

$$\begin{cases} D^{\alpha} E \phi(x', +0) = (\sum_{k=0}^{\infty} d_{k}(-2^{k})^{\alpha} D^{\alpha} \phi(x', 0) = (-1)^{\alpha} g(2^{\alpha} D^{\alpha} \phi(x', 0)) \\ D^{\alpha} E \phi(x', -0) = (\sum_{k=0}^{\infty} c_{k}(-2^{k})^{\alpha} D^{\alpha} \phi(x', 0) = (-1)^{\alpha} f(2^{\alpha} D^{\alpha} \phi(x', 0)). \end{cases}$$

i) then follows from

(16)
$$f(2^h) = g(2^h) = \pm 1.$$

ii) Let $\alpha_{_{\mbox{\scriptsize I}}}$ < r. Using (15) and (14) it follows that

(17)
$$D^{\alpha}E\phi(x',0) = (-1)^{\alpha} f(2^{n})D^{\alpha}\phi(x',0) = -D^{\alpha}\phi(x',0).$$

But if $E\Phi = \Phi$ then

(18)
$$D^{\alpha}E\phi(x',0) = D^{\alpha}\phi(x',0).$$

Comparing (17) and (18) we get $D^{\alpha}\phi(x^{\dagger},0)=0$ for $|\alpha|< r$, that is $\phi\in D_{r}(R_{n}^{+})$.

iii) Observe that
$$T_g T_f \phi(x',t) = \sum_{k=0}^{\infty} d_k (\sum_{h=0}^{\infty} c_h \phi(x',2^{k+h}t)) = \sum_{j=0}^{\infty} \phi(x',2^{j}t) (\sum_{k=0}^{j} d_k c_{j-k}).$$

Since f(z).g(z)=1 we have $\sum\limits_{k=0}^{j}d_kc_{j-k}=1$ if j=0 and 0 otherwise. Therefore, it holds pointwise that

(19)
$$T_{g}T_{f}\phi(x',t) = \phi(x',t) = T_{f}T_{q}\phi(x',t).$$

iv) By i), $\|\mathbb{E}_{\varphi}; H^{S}(\mathbb{R}_{n})\| \leq \|T_{f}\varphi; H^{S}(\mathbb{R}_{n}^{-}\| + \|T_{g}\varphi; H^{S}(\mathbb{R}_{n}^{+})\|$. Now Theorem 3 yields iv). v) By iv), $\mathbb{E}_{\varphi_{m}}$ is a Cauchy sequence in $H^{S}(\mathbb{R}^{n})$. Therefore, there exists $\mathbb{U} \in H^{S}(\mathbb{R}^{n})$ such that $\|\mathbb{E}_{\varphi_{m}} - \mathbb{U}; H^{S}(\mathbb{R}^{n})\|$ tends to zero.

But in virtue of Theorem 3, ii) both norms $\|E\phi_m - T_gv;H^S(R_n^+)\|$ and $\|E\phi_m - T_fv;H^S(R_n^-)\|$ tend to zero. So U restricted to R_n^+ is equal to T_gv and U restricted to R_n^- is T_fv . Since the distribution U is a function of $L^2(R^n)$ it follows that U = Ev, Q.E.D.

Note that conditions (14) for $r < i \le R$ are not really used in the proof of Lemma 3.

6. PROOF OF THEOREM 2. Let $u \in H_{r,R}(R_n^+)$, supp $u \subset K$ and call $u' := E_f u$ (cfr. (6)). Observe that by (14) the hypotheses of Theorem 4 are fullfilled. Thereby $u' \in H^R(R_n)$, supp $u' = K' = \text{compact in B and Eu'} \in H^R(R_n)$. In consequence, from the definition of u' we have Eu' = u' a.e. (cf. (19)). Now let $\phi_h^+ \in C_0^\infty(B)$ be a sequence converging to u' in $H^R(R_n)$. By Lemma 3, v), $E\phi_h^+$ converges to Eu' = u' in $H^R(R_n)$ and then

(20)
$$\|u' - \phi_h; H^R(R_n)\| \to 0 for h \to 0$$

if $\phi_h := (\phi_h^{\dagger} + E\phi_h^{\dagger})/2$.

Using Lemma 3, iii), we see that $\mathsf{E} \varphi_\mathsf{h} = \varphi_\mathsf{h}.$ Then by ii) of the same Lemma we obtain that $\mathsf{u}_\mathsf{h} := \varphi_\mathsf{h}$ restricted to R_n^+ belongs to $\mathsf{D}_\mathsf{r}(\mathsf{R}_\mathsf{n}^+).$ Since $\|\mathsf{u} - \mathsf{u}_\mathsf{h};\mathsf{H}^\mathsf{R}(\mathsf{R}_\mathsf{n}^+)\| = \mathsf{D}_\mathsf{r}(\mathsf{R}_\mathsf{n}^+)$

= $\|\mathbf{u}' - \phi_h; \mathbf{H}^R(\mathbf{R}_n^+)\| \le \|\mathbf{u}' - \phi_h; \mathbf{H}^R(\mathbf{R}_n)\|$, we see by (20) that the sequence \mathbf{u}_h satisfies all the requirements, Q.E.D.

7. FINAL REMARKS. a) The construction of our extension operator $\mathbf{E}_{\mathbf{f}}$ is essentially the one used by Seeley in [Se] however corresponding to entire functions of different nature. In order that E_f extends $C^{\infty}(R_n^+)$ to $C^{\infty}(R_n)$, Seeley needs $f(2^h) = (-1)^h$ for $h = 0, 1, \dots$ This is never true for our f since we have $f(2^h) = (-1)^{h+1}$ for h = 0, ..., r - 1 (and besides $f(2^h) = (-1)^{R-1}$ for h \geqq R). On the other hand the coefficients $\mathbf{a}_{\mathbf{k}}$ found by Seeley define an entire function of exponential type with zeroes and in that case g = 1/f is not an entire function (cfr. [A], [Se]). b) Our method can be applied to prove that $\mathrm{D}_{_{\mathbf{\Gamma}}}(\Omega)$ is dense in other Banach

spaces. For $1 \le p < \infty$, 0 < r < R, r, R integers, define

THEOREM 1'. If Ω is a bounded domain with C^{∞} boundary, then $\mathcal{D}_{n}(\Omega)$ is dense in $W_{1,R}^{\rho}(\Omega)$.

This theorem reduces to prove

THEOREM 21. { $u \in D_n(\mathbb{R}_n^+)$: supp u bounded} is dense in $W_{n,R}^p(\mathbb{R}_n^+)$.

The proof follows the same lines as that of Theorem 2 noticing that the operator E_f defined by (6) is continuous from $\psi_{r,R}^p(R_n^+)$ into $\psi_{r,R}^{R,p}(R_n)$, and the operator E of Lemma 3 is continuous in $\psi^{R,p}(\mathsf{R}_\mathsf{n}).$ Lemma 2 should be replaced by

LEMMA 2'. If $u \in C^{2}(\overline{\Omega})$ and $\overline{D}^{\alpha}u = 0$ on $\partial\Omega$ for $|\alpha| < r$, then $u \in W_{0}^{r,p}(\Omega)$.

THEOREM 5. Let r be, a positive integer and R a nonnegative one. The completion of $D_{n}(\Omega)$ in the norm $\|\cdot; \mathcal{W}^{R,p}(\Omega)\|$ is isomorphic to the space $\mathcal{W}^{R,p}_{0}(\Omega)$ if $R \leq n$ and isomorphic to $W_{r,R}^{p}(\Omega) \supseteq W_{0}^{p,p}(\Omega)$ if R > r.

PROOF. In fact, for $R \le r$, because of Lemma 2', we have

$$C_{o}^{\infty}(\Omega) \subset D_{r}(\Omega) \subset D_{R}(\Omega) \subset W_{o}^{R,p}(\Omega).$$

If R > r, it follows from Theorem 1' that $\mathbb{W}_{r,R}^{p} \supset \mathbb{W}_{o}^{R,p}$. To prove that the inclusion is proper consider the function $k(x) = x_{n}^{r} \phi(x') \psi(x_{n})$ restricted to R_{n}^{+} where $\phi(x') \in C_{o}^{\infty}(R_{n-1})$, $\psi \in C_{o}^{\infty}(R_{1})$, ϕ and ψ equal to one in a neighborhood of zero. Then, k is of bounded support and belongs to $\mathbb{W}^{R,p}(R_{n}^{+}) \cap \mathbb{W}_{o}^{r,p}(R_{n}^{+})$. If k belonged to $\mathbb{W}_{o}^{R,p}(R_{n}^{+})$ then k should belong to $\mathbb{W}_{o}^{R,p}(R_{n}^{+})$. However, $\mathbb{D}_{x_{n}}^{r+1}k$ is not a function, Q.E.D.

REFERENCES

- [A] ADAMS, R.A., Sobolev Spaces, Academic Press, (1975).
- [S] SCHECHTER, M., Modern Methods in Partial Differential Equations, McGraw-Hill Inc. (1977).
- [Se] SEELEY, R.T., Extension of C^{∞} -functions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), pp. 625 626).